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PREFACE

Throughout this document a monochrome image will be

denoted by brightness function I(r,c) , where r and c are

discrete row and column coordinates. I(r,c) is assumed

nonzero only for the square region 0 < r < N and

0 < c < N, although extension to other image shapes and

coordinate systems is trivial. Image windows are

similarly indexed nxn blocks. The image function may be

considered a non-negative matrix. It can take either

discrete values called gray levels or continuous values

called luminance, brightness, density, or transmissivity.

Individual image elements will be called pixels. Elements

of texture-feature planes will also be called pixels.

They may take negative values, but will be rescaled to a

positive range for display as images.

This dissertation is the record of a search for fast,

effective texture measures. Fortunately, the search was

successful. Details of the search will not be of interest

to all readers, however. Chapters 1 and 2 introduce the

problem of texture segmentation and the historical

approaches to texture analysis. Chapter 3 documents our

vii
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method of evaluating texture modc.il. Chapter A applies

this experimental paradigm to the co-occurrcnc mrethod of

texture measurement; this establishes a benchmark for

evaluating other texture models. Correlation methods are

investigated in Chapter 5. Chapter 6 traces the failures

and partial successes of various "spatiel-statistical"

models. Chapter 7 presents the "texture energy" approach

to texture measurement, and Chapter 8 develops it into an

image segmentation system. Those interested only in the

final analysis system should read Section 1.2 and Chapter

8. Chapter 9 contains a brief summary and sugqestions for

further research. Three appendiccs document t h

techniques used in this study.

Kenneth I. Laws

Los Anqeles, California

November, 1979
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ABSTRACT

The problem of image texture analysis is introduced, and
existing approaches are surveyed. An empirical evaluation
method is applied to two texture measurement systems,
co-occurrence statistics and augmented correlation
statistics. A "spatial-statistical" class of texture
measures is then defined and evaluated. It leads to a
simple class of "texture energy" transforms, which perform
better than any of the preceding methods. These
transforms are very fast, and can be made invariant to
changes in luminance, contrast, and rotation without
histogram equalization or other preprocessing.

Texture energy is measured by filtering with small masks,
typically 5x5, then with a moving-window average of the
absolute image values. This method, similar to human
visual processing, is appropriate for textures with short
coherence length or correlation distance. The filter
masks are integer-valued and separable, and can be
implemented with one-dimensional or 3x3 convolutions. The
averaging operation is also very fast, with computing time
independent of window size.

lexture energy planes may be linearly combined to form a
smaller number of discriminant planes. These principal
component planes seem to represent natural texture
dimensions, and to be more reliable texture measures than
the texture energy planes.

Texture segmentation or classification may be accomplished
using either texture energy or principal component planes
as input. This study classified 15x15 blocks of eight
natural textures. Accuracies of 72% were achieved with
co-occurrence statistics, 65% with augmented correlation
statistics, and 94% with texture energy statistics.
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CHAPTER 1

INTRODUCTION

Many tasks can be performed better by mechanical

means then by biological systems. Not only are physical

systems faster, more sensitive, and more attentive than

* any human, but also more quantitative. Image analysis is

a task ripe for automation. This study will develop

methods for extracting texture information from aerial

photographs and images of natural scenes.

The goal of image analysis is extraction from an

image of all the useful information it contains. Only

through imege analysis does photographic film become a

useful medium for date acquisition. Most analysis is now

accomplished by human interpreters, but mass screening

applications are growing so fast that automation is

essential.

Scene analysis is the extraction of region or object

description from a given picture. The description may be

numerical or it may be a data structure representing

properties and relationships of the scene components. The

following are important steps in the development of a

scene analysis system:

1. Determine the purpose of the analysis.

2. Model the data source.
3h,.3. Analyze the model to determine useful features.



4. Preprocess data to remove known effects. .

5. Extract features or segment the image.

6. Edit, resegment, or improve features.

7. Code and/or display regions and boundaries.

8. Use extracted information for semantic scene
analysis.

Texture analysis is fundamental to some applications,

such as metal surface analysis and geologic fault

identification. Appropriate theories of texture

generation are required. in other applications, such as

radiographic diagnosis, texture recognition is more

important than knowledge of the physical generating

mechanism. General image analysis systems, such as the

human visual system, use texture as an aid in segmentation

and interpretation of scenes.

Figure 1-1 illustrates two fundamental texture types.

The first image is a "macro-texture," or high-resolution

repetitive pattern. Structural analysis methods are

adequate to describe such textures, although more than one

type of description is possible. The other three images

in Figure 1-1 are scenes which might be of interest in

aerial reconnaisance and vehicle guidance. The scene

components are differentiated by their textures, but

description in terms of repetitive structural elements is

impossible. This dissertation will develop methods of

isolating and identifying small textured regions in

natural scenes.

* .This study is not limited to any one application area
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or data type, although it is biaseO toward the Pnalysjs of

aerial images. Military and security applications of

scene analysis are reconnaissance, night vision, mapping

and terrain classification, target detection and tracking,

traffic monitoring, personnel identification, fingerprint

matching, and airport screening. Industrial and

scientific applications include thermal analysis, parts

inspection, particle counting, automation and robot

vision, crop monitoring, remote sensing, geological

analysis, cell classification, chromosome analysis, and

radiological diagnosis. Scene analysis techniques might

also be of use in pattern recognition and document

processing.

1.1 Visual Texture Perception

Visual textures arise from many sources. Cellular

textures are composed of repeated similar elements called

primitives. Examples are leaves on a tree or bricks in a

wall. Other texture types include flow patterns, fiber

masses, and stress cracking. A complete analysis of any

texture would require modeling of the underlying physical

structure.

The human visual system is capable of discriminatinq

and classifying all of these textures. It is obvious that

spontaneous discrimination does not require built-in

models of physical texture generators, although such

models may be used by trained observers.

Texture is generally taken to mean whatever structure

exists within a semantic region (one to which a name can

4



be assigned). One component of this structure is detail,

small image regions that are identifiable but not

semantically important. A second component is noise,

taken to be any artifact of the imaging and quantizing

process. The third component resembles noise, but is a

property of the imaged object or scene. It arises from

detail just beyond the perceptual resolving power of the

analysis process, and seldom possesses a recognizable

pattern or dominant repetition frequency. We shall call

this component stochastic texture, micro-texture, or just

texture.

Texture is both structured and random. Tt is common

to speak of a uniform texture or a homogeneous texture,

despite the apparent contradiction. This homogeneity is a

perceptual phenomenon. Somehow the human visual system

analyzes images and measures texture properties. Some

texture fields are seen to be equivalent, others to differ

in coarseness, linearity, or other texture dimensions.

All, however, are unified by their perception as texture

fields. We generally know a texture field when we see

one.

Perception of related elements as a whole is known as

grouping. Grouping is more fundamental than recognition,

as demonstrated by figure-ground reversals and by

ambiguous figures that cannot be recognized until parts

are grouped [I]. We use contour, brightness, color, and

texture for grouping, as well as stereopsis and relative

motion.

5
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Texture perception is itself a grouping phenomenon.

Julesz [2] showed that spontaneous texture discrimination

can occur even when recognition is prevented, and that a

small amount of noisc can disrupt texture perception if it

destroys connectivity of texture elements. He comments

that

Instead of performing complex statistical analyses
when presented with complex patterns, the visual
system wherever possible detects clusters and
evaluates only a few of their relatively simple
properties. [p. 43]

If true, it does not necessarily follow that the eye

segments an image before evaluating texture. This study

will concentrate on an alternate hypothesis that local

segmentation and texture description are performed at each

pixel, with no global agreement on exact region

boundaries.

The chief characteristic of texture is shift-

invariance. Perception of a texture field does not change

as its position on the retina changes. This seems to be

the very definition of a texture field: an image that is

not significantly changed by shifting. A region or

object, on the other hand, is position dependent.

We shall define texture to be that which remains

constant as a window (or fovea) is moved across an image.

This presupposes that the image is a single texture field.

Note that texture may change as a function of window size.

There is an ambiguity in the common meaning of

texture. Let two texture fields be identical except for a

difference in luminance. Most observers will say that the

6
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(a) Uniformity (b) Density

(c) Coarseness (d) Roughness

.3iI nil I!1

(e) Regularity (f) Linearity

(g) Directionality (h) Direction

(i) Frequency (j) Phase

Figure 1-2. Perceptual Texture Dimensions.
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textures ere identical, although the two fields are easily

distinguished. Similar results will be obtained with

texture fields differing in contrast, color, size,

rotation, or geometric warp. Texture is perceived to be

invariant to changes in illumination or camera position.

we shall consider all of these differences to be

differences in texture, although ones easily measured or£

compensated. Experimental work for this study uses

monochrome images quantized to have nearly uniform gray

level histograms. This compensates for any differences in

illumination, sensor type, or film developing parameters.

One goal of texture analysis is discovery of texture

measures that correlate well with human perception.

Figure 1-2 illustrates commonly proposed structural

texture dimensions. The illustrated scales are not

independent: frequency is much the same as density, and

coarseness is related to density and to element size (not

shown). Perceptual contrast is correlated with several of

these scales. Linearity is an attempt to describe element

shape quantitatively. Direction clearly applies only to

directional textures.

Julesz 121 has shown that the eye uses cdaptive level

slicing. It may group white with gray or gray with black,

but it cannot group white with black. The eye con ]so

group red with yellow and green with blue, but not red

with green or yellow with blue. 7t seems reasonable that

texture scales should have the same property.

It is debatable whether direction and phase arc

8I
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texture scales, although the texture fields are clearly

discriminable. Using the criterion of shift invariance,

we shall consider direction to be a texture dimension;

phase is excluded. Note that phase discriminability might

be due to distinctive texture properties of the region

interface.

Perceptual scales such as these are useful for region

description, but may have little relation to texture

measures computed in the human eye or in an artificialI

vision system. Directionality and regularity may be high-

level descriptions generated long after texture

segmentation has taken place. The same may be true of

shape descriptions and of color transformations such as

hue and saturation.

1.2 A Practical Texture Analysis System

This dissertation presents a set of "texture energy"

transforms that provide texture measures for each pixel of

a monochrome image. The transforms are fast, reouiring

only one-dimensional convolutions and simple

moving-average techniques. The method is more accurate

than gray level co-occurrence methods. Tt is local,

operating on small image windows in much the same manner

as the human visual system. It can be made invariant to

changes in luminance, contrast, and rotation without

histogram equalization or other preprocessing.

Figure 1-3 shows the sequence of images, or image

blocks, used in measuring texture. The original image is

first filtered with a set of small convolution masks,
b. 9
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(a) Operator Sequence

(b) Image Plane Secruence

Figure 1-3. Texture Measurement
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typically 5x5 masks with integer coefficients. Only one-

dimensional convolution is required, since the masks are

separable. The filtering could also be accomplished with

multistage 3x3 convolutions.

The filtered images are then processed with a

nonlinear "local texture energy" filter. Thfs is simply a

moving-window average of the absolute image values. Such

moving-window operations are very fast even on general-

purpose digital computers. The best window size depends

on the size of image texture regions. This study has

concentrated on 15x15 windows. Even smaller windows might

be useful if color information were available.

Figures l-3a and l-3b show a one-to-one mapping

between filtered images and texture energy planes. Twelve

measures per pixel were used in preliminary research.

Experience has shown that either variance or standard

deviation alone is sufficient to extract texture

information from the filtered images.

Variance is an average squared deviation from the

mean. For a zero-mean field, it is an energy measure.

The standard deviation is the square root of this local

energy. It may be considered a "texture energy" measure.

A faster energy transform is the average of absolute

values within a window. All of these texture measures

give equivalent performanc-°.

These statistics are more local than previously

studied frequency-domain texture measures. Freouency

components are measured with very small convolution masks.





Phase relationships within each window are measured

without regard to any global origin. This method, similar

to human visual processing, is appropriate for textures

with a short coherence length or correlation distance.

The next step in Figure 1-3 shows the linear

combination of texture energy planes into a smaller number

of principal component planes, typically three or four.

This is an optional data compression step. It is tempting

to call the final images "perceptual planes," but it has

not yet been proven that they relate to human texture

* perception. They do seem to represent natural texture

dimensions, and to be more "reliable" than the texture

energy planes.

The final output is a segmented or labeled image. A

classifier assigning texture labels to the image pixels

can take either texture energy planes or principal

component planes as input. Classification is simple and

fast if texture classes are known a priori. Clustering or

segmentation algorithms must be used if texture classes

are unknown.

Figure 1-4a is a composite of the natural textures

used in this study. The first two rows'of ]28x128 blocks

are from images of grass, raffia, sand, wool, pigskin,

leather, water, and wood. The lower-left auadrant is

composed of 32x32 blocks, and the lower-right ouadrant of

16x16 blocks. The 128x128 blocks have been individually

histogram equalized; the other blocks .bave been equalized

by quadrant. The textures were chosen ptecisely because

13

* -*



IM .I,' - - -I

they are difficult to discriminate. They are a'worst case

dataset.

We have applied a simple set of texture energy

transforms to the texture composite in Figure 1-4. Each

pixel was then classified into one of the eight texture

categories. Average classification accuracy is near 87%

for interior regions of the 128x128 blocks. The 32x32

blocks are well separated, and the 16x.6 blocks are

differentiated to an extent. We believe this perfomance

to be unmatched by any other texture classifier or image

segmentation system.

i ,1
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CHAPTER 2

REVIEW OF TEXTURE ANALYSIS APPROACHES

Despite its importance, there is no generally

accepted definition of texture. There are many models for

the generation of particular texture classes (31, (41.

There are numerous ad hoc texture discrimination

* techniques. Yet there is no agreement on how to measure

texture.

The eye must use the same feature extraction methods

on every texture field, regardless of source. We do not

know what these methods are, although there is indirect

evidence that edge detection is involved. We do know that

any retinal transform must retain enough information to

distinguish different textures and suppress or ignore

information distinguishing equivalent textures (as

identified by human observers).

If computers could achieve the same processing

results as humans, it would not fmatter how low-level data

reduction was accomplished. It is unlikely, however, that

we can ever simulate the activity of the human cortex

without first learning the type of data it uses as input.

Julesz developed a basic test of human texture

perception [5]-[71 in which split images of two computer

generated texture fields are displayed. He found that

viewers can spontaneously discriminate between textures

15
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differing sufficiently in first- or second - order

probability densities. They cannot easily discriminate

beteen stochastic textures differing only in third-order

statistics. Julesz conjectured that second - order

statistics are sufficient determinants of human texture

perception. This has led to the widespread belief that

second order moments or spatial frequency spectra are

sufficient measures of perceived texture.

The experiments were persuasive, but not conclusive.

Julesz's texture fields had only four gray levels and were

highly constrained. Because they were generated line by

line there could be no vertical correlation. First- or

second-order densities held constant for both fields had

to be uniform, and when both were held constant there

could be no spatial correlation whatever.

Recently Pratt, Faugeras, and Gagalowicz [8] extended

this work to texture fields with multiple gray levels and

controlled correlation in both spatial dimensions. Such

fields can mimic natural textures reasonably well. Their

experiments have supported Julesz's conjecture. Observers

can discriminate such textures differing sufficiently in

first-or second-order densities, but not those differing

only in third order density. Furthermore, discriminable

textures can be generated having common mean, variance,

and autocorrelation function. Thus first-and second-order

statistics may be sufficient descriptors of texture, but

the mean, variance, and autocorrelation function are not.

Tamura et al. [9l have developed features correlating

16



well with human perceptions of natural textures. They

have successfully measured coarseness, contrast, and

directionality. It should be understood, however, that

human observers do not interpret these words uniformly or

repeatably. The texture measures ere not computationally

simple, and the measured concepts themselves cannot be

defined independently of the observer's culture and

experience.

Another perceptual modeling experiment has been

devised by Zobrist and Thompson [1.. Three artificially

generated textures are displayed. The viewer decides

whether the first and second or the second and f-hire are

more similar. This protocol gets closer to the mechanics

of texture perception, but the quantity being measured is

left uncertain. Even simple changes in the spacing or

shape of texture elements can alter many statistical

properties of en image.

Many other types of texture measures have been

proposed [10], [I11. The remainder of this section

surveys the commonly used features. Later chapters will

elaborate on the texture measures chosen for this study.

2.1 Statistical Features

Vhe most powerful and appropriate statistics for a

particular type of texture are those estimating parameters

of the generating process. A general vision system,

however, must use features common to many types of

texture. One way to find such features is to model the

human visual system.

17
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Natural texture dimensions can also be discovered by

studying homogeneous texture fields. Each field contains

variation inherent to that texture type. Different fields

have different types of variation. Discriminant analysis

is an appropriate tool for identifying which are the

significant variations. It is only necessary that we

propose a set of texture measures; the analysis determines

which linear combinations are useful.

The simplest texture properties are those based on

* single-point statistics. In monochrome imagery the only

point property is luminance. Color images oriqinate with

an infinite number of degrees of freedom, commonly reduced

to three primary responses by modern sensors. Some sensor

systems record as many as 24 spectral bands.

The three primary responses are by no means the only

way to record and use color date. There is a bewildering

array of information-preserving color transformations

[12]. Standard color coordinates systems have

nonremovable singularities that can interfere with

numerical analysis (13]. The human visual system seems to

perform a complex mapping from spectral input to perceived

color [14]. It is not known whether this transformation

occurs before or after texture recognition.

A multispectral image is a vector function of a two-

dimensional domain. Statistical methods may be used to

classify the pixel vectors to a known set of source

classes, or to cluster the vectors to determine a

posteriori classes. Pointwise transformations of the

pixel vectors may be used to reduce complexity of the

18
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classifier.

Such pointwise statistical analyses lack spatial

context, the essence of texture. It is true that first-

order statistical properties satisfy the criterion of

shift-invariance, but they are also invariant to any

rearrangement of the image pixels. It is not surprising

that such methods have failed to match the classification

accuracy of trained humans.

Moving-window or convolution methods may be used to

compute texture planes. These are continuously applied

region-to-point transformations. The texture planes may

be treated as additional spectral bands, introducinq

spatial dependencies into the analyses. We shall study

these "spatial-statistical" methods in Chapters 6 and 7.

2.2 Autocorrelation Features

Texture is both spatial and statistical. Tt is

spatial since texture is the relationship of groups of

picture elements. Nothing can be learned about texture

from an isolated pixel, and little from a histogram of

pixel values. Monotonic transformations leave texture

largely unchanged.

There is good evidence that the human visual system

does not respond to spatial dependencies of higher than

second order. The relationship between any two pixels may

be significant, but their joint relationship with any

third pixel in an imaqe field is not. This suggests the

digital autocorrelation function as a matrix of texture

descriptors.
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Mathematically this function is defined as

I(r,c) I(r+i,c+j)
r,c

C(i,j) =- -----------------------

12 (r,c)
r,c

It is convenient to restrict r and c, the row and column

indices, to lie within the window; this is equivalent to

assuming that the image function is zero outside the

window. Note that i and j, the shift indices, may take

negative values; the function is symmetric about the

origin.

The autocorrelation function of an image measures how

well the image matches a shifted version of itself.

Autocorrel.tion is nonnegative (for nonnegative images)

and takes its maximum value of 1.0 at shift (0,0).

Correlation drops off exponentially with increasing shift.

Typical photographs have nearest-neighbor (or single-pixel

shift) correlations above 0.95. Texture blocks used in

this study have nearest-neighbor coefficients near 0.70,

with coefficients as low as 0.30 for some 15x15 blocks.

The autocorrelation function contains two types of

information. One is texture coarseness, as revealed by

the slope of the central peak. Autocorrelation of a

coarse texture Jecays very slowly with increasing pixel

separation. The other type of information concerns

periodicity. Any regularity in size or spacing of texture

elements will be revealed as an energy peak within the

utocorrc] tion function. Man-mrade orchards and fields,
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for instance, have regular spacings appearing as periodic

amplitudes in the auto-correlation function.

The relationship between correlation and coarseness

in seven Arctic aerial photographs was investigated by

Kaizer [151. He measured the image distance at which

autocorrelation dropped to I/e. (Circular symmetry of the

autocorrelation function was assumed.) Then 20 subjects

ranked the pictures in terms of coarseness. He found

almost perfect agreement between l/e distance and

perceptual coarseness.

Unfortunately the autocorrelation function of most

natural textures are very similar. Description of the

correlation function by its first few spatial moments has

little power unless correlations are measured over very

large windows. This would be inappropriate in image

analysis, since relatively small regions of texture must

be identified.

The autocorrelation function is still being proposed

as a source of texture features [81 , however, and as the

basis for linear-predictive texture synthesis and

segmentation [161-[181. Usefulness of autocorrelation

texture features will be explored further in Chapter 5.

A generalized autocorrelation measure is reported by

Haralick fi1. It is based on the "mathematical

morphology" binary filtering theory of Serra and Matheron

as used in the Leitz texture analysis system [191.

Instead of summing terms of the form I(r,c)I(r+ic+j)

texture is measured by summing G(r,c)H(r+i,c+j), where
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G(r,c) and H(r,c) are functions of the neighborhood of

image point (r,c). Another way of producing the same

result is to convolve functions G and H with the imaqe,

then cross-correlate the resulting feature planes. If C

and H are identical, this reduces to autocorrelation of a

single feature plane.

Some textures have regular structure best identified

in the frequency domain. One could transform the

autocorrelation function and use Fourier coefficients as

texture measures. The autocorrelation function, however,

is usually computed in the frequency domain by Fourier

transforming the image itself. Further, the Fourier

transform can be obtained optically. For both theoretical

and computational reasons, frequency methods have largely

supplanted correlation methods.

2.3 Spatial Frequency Features
Textures composed of repeated, regularly spaced

elements are well described by their Fourier components.
6

Natural textures are seldom so regular, but can also be

descriminated by frequency domain features.

It has been shown (201 that Fourier features provide

useful information for aerial classification and for

identification of texture gradients. Performance of other

transforms has also been investigated. Hadamard and slant

transforms, for instance, have been found [21] to work as

well as the Fourier for aerial classification.

Lendaris and Stanley [221 did the pioneering work in

Fourier texture discrimination. They illuminated circular
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sections of aerial imagery and sampled the Fraunhofer

diffraction patterns cast by a lens. This diffraction

pattern corresponds to the magnitude of the Fourier

transform. (Neither they nor subsequent researchers seem

to have investigated the Fourier phase component as a

texture measure.) They integrated the transform energy

over radial wedges and over concentric rings, a sampling

scheme still used in some commercial systems.

Wedge features measure directionality in the original

image. Linear classifiers using these features have

performed well in recognition experiments, although their

ability to handle rotated texture fields is open to

question. Annular features have proven to be less

valuable; apparently all natural images have similar

spatial frequency spectra. Bajcsy and Lieberman [231

found annular components valuable for measurinq element

size in "blob-like" textures.

Other experimenters [241-[261 have used digital

techniques to transform texture fields. Special FFT

algorithms and hardware make large transforms practical,

and moving-window techniques [27] reduce the cost of

repeated small transforms.

The chief difficulty with transform methods is that

they must be computed over large windows. Small window

transforms reveal only high-frequency information,

negating the theoretical justification of the transform.

Further, single frequencies are seldom important or

reliable. The spectrum must usually be reduced to a
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smaller number of features by computing functions of the

spectrum.

2.4 Co-occurrence Features

Frequency-domain measures have little theoretical

justification for randomly spaced texture elements or for

small window sizes. They are also inappropriate for

nonstationary textures or mixed textures within a sampling

window. All of these problems exist in the segmentation

of natural scenes. Correlation techniques are one way to

analyze texture in the spatial domain; co-occurrence

techniques are another.

A co-occurrence matrix is an estimate of the joint

probability density function for pixels separated by a

particular row and column shift. The i,j-th element is

the number of times pixels with the luminance values i and

j occur in a specified spatial relationship. Often this

matrix is normalized by dividing each count by the total

number of pixel pairs.

Transition probabilities are sensitive to contrast

and average luminance of an image. Tt is therefore

necessary to standardize each ivtage or window by scaling

or histogram modification. This will be discussed further

in Section 3.4.

Co-occurrence approaches are an outgrowth of the

Markov model of texture generation f281-[301. Julesz 151

was the first to use higher order transition matrices for

texture synthesis. These matrices are equivalent to

nearest-horizontal-neighbor co-occurrence matrices,
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sections of aerial imagery and sampled the Fraunhofer

diffraction patterns cast by a lens. This diffraction

pattern corresponds to the magnitude of the Fourier

transform. (Neither they nor subsequent researchers seem

to have investigated the Fourier phase component as a

texture measure.) They integrated the transform energy

over radial wedges and over concentric rings, a sampling

scheme still used in some commercial systems.

Wedge features measure directionality in the original

image. Linear classifiers using these features have

performed well in recognition experiments, although their

ability to handle rotated texture fields is open to

question. Annular features have proven to be less

valuable; apparently all natural images have similar

spatial frequency spectra. Bajcsy and Lieberman [231

found annular components valuable for measuring element

size in "blob-like" textures.

Other experimenters [241-[261 have used digital

techniques to transform texture fields. Special FFT

algorithms and hardware make large transforms practica]

and moving-window techniques [271 reduce the cost of

repeated small transforms.

The chief difficulty with transform methods is that

they must be computed over large windows. Small window

transforms reveal only high-frequency information,

negating the theoretical justification of the transform.

Further, single frequencies are . seldom important or

reliable. The spectrum must usually be reduced to a
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smaller number of features by computing functions of the

spectrum.

2.4 Co-occurrence Features

Frequency-domain measures have little theoretical

justification for randomly spaced texture elements or for

small window sizes. They are also inappropriate for

nonstationary textures or mixed textures within a sampling

window. All of these problems exist in the segmentation

of natural scenes. Correlation techniques are one way to

analyze texture in the spatial domain; co-occurrence

techniques are another.

A co-occurrence matrix is an estimate of the joint

probability density function for pixels separated by a

particular row and column shift. The i,j-th element is

the number of times pixels with the luminance values i and

j occur in a specified spatial relationship. Often this

matrix is normalized by dividing each count by the total

number of pixel pairs.

Transition probabilities are sensitive to contrast

and average luminance of an image. Tt is therefore

necessary to standardize each image or window by scaling

or histogram modification. This will be discussed further

in Section 3.4.

Co-occurrence approaches are an outgrowth of the

Markov model of texture generation f281-1301. Julesz [51

was the first to use higher order transition matrices for

texture synthesis. These matrices are equivalent to

nearest-horizontal-neighbor co-occurrence matrices,
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although normalization is applied to each row separately

instead of to the matrix as a whole. Similar texture

statistics have been used by Darling and Joseph [311 and

by other researchers to discriminate cloud types, cell

types, and textures.

Co-occurrence matrices for arbitrary row and column

shift were first proposed by Rosenfeld and Troy [321 and

by Haralick et al. [33], [34]. Many subsequent studies

[35]-[39) have proven the value of these measures for

aerial, X-ray, and microscopic imagery. Comparative

studies [401, [41] have verified the superiority of

co-occurrence statistics over spatial frequency and other

early texture measures.

The number of co-occurrence matrices that can be

computed is very large. Row shift can vpry from zero to

almost the number of window rows; column shift can vary

over a similar range. Negative shifts are al so

permissible, although there are symmetry consider-tions.

Each combination generates an entire co-occurrence matrix.

For texture segmentation by pixel classification, each

matrix must be computed around each image pixel. Clearly

it is necessary to choose some small subset of these

matrices to be computed. The best set is undoubtedly a

function of the texture discrimination task.

The size of each co-occurrence matrix is also

problem. Most images are recorded with eight bits per

pixel, or 256 gray levels. A few optical sistems provide

twelve bit resolution, or 4096 gray levels. Joint
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probability matrices, however, are unreasonably large for

images with more than 16 gray levels. Requantization to

this number of levels conceals low contrast textures.

Haralick uses symmetric co-occurrence matrices

(equivalent to averaging the matrix with its transpose)

In some studies, he has reduced storage further by

assuming rotational isotropy, i.e. by averaging all

matrices computed for the same relative pixel shift in

different directions. It has been shown [411, [421 that

even the symmetry assumption is too strong for a simple

Markov model of texture.

There may be an adaptive quantization scheme which

-etains the character of low-resolution textures. One

approach is iterative histogram modification f431.

Another is to bypass the co-occurrence matrix itself. The

matrix is usually reduced to a vector of features by

computing two-dimensional moments. Moments that are

linear functions of the matrix elements can be computed

directly from the texture image. Examples are sums of

probability mass along the major and minor diagonals. For

such moments, the co-occurrence matrix is simply a

theoretical intermediary; it need not be computed.

Individual elements of a co-occurrence matrix do not

make good features: matrix elements are subject to large

fluctuations due to sampling variation, the number of

matrix elements is large, and samplinq or unraveling of

the matrix ignores the two-dimensional structure of the

data. These objections can be met by usinq spatial
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moments of the matrix as features.

Many weighted moments have been suqqested. Haralick

et al. [341 proposed a set of 14 moments, some later

parameterized to form families of moments fill. Pressman

[381 suggested seven more moments; none were found useful.

Chang [44] has suggested a principal components approach

to extracting the significant information.

An entropy or conspicuousness transform has also been

proposed by Haralick [451 , [1]]. This is one way of

* generating a texture plane without computing co-occurrence

matrices for each point. Co-occurrence matrices are

computed for pixels in a large area, possibly the entire

image. Likelihood of each pixel is computed by lookinq 6p

its gray level and that of its neighbors in the matrices.

The likelihood, or some related function, can then be used

in texture segmentation. "Common" pixels arc rpmoved as

one segment, and co-occurrence statistics Pre then

recomputed for the remaining pixels. The seqments are

thus identified without the necessity of classifyinq

pixels as to texture type, much in the manner of the

Ohlander segmenter [46]. These likelihood measures are

similar to the conspicuousness transform of Winkler and

Vattrodt [471 and the linear prediction techniaues of

Deguchi and MorishitE- [18].

2.5 Structural Features

A composite texture is one composed of primitive

elements. A description of such a texture, in terms of

observed primitivcs and their relationships, is c]lled a
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structural description. The description should be

sufficiently flexible that a class of equivalent textures

can be generated by using similar primitives in similar

relationships.

A texture primitive is a maximal connected set of

pixels having some property. Very complicated primitives

have been used: Lu and Fu [481, [491 derive sets of

primitives from arbitrary imac' windows. At the other

* extreme, individual pixels may be considered texture

primitives.

Simple texture fields can be completely characterized

by a set of primitives and a placement rule. Examples are

characters of text or uniformly spaced polka dots.

Sometimes the placement rule may be stochastic, as with

irrtqularly spaced polka dots. Sometimes primitives may

overlap, as with tree leaves; sometimes they add or "show

through."

Primitive elements may also have stochastic

attributes. They may differ in size, shape, orientation,

color, or texture. These attributes may be independent or

interrelated. They may be correlated with attributes of

nearby primitives, and the relationships may change slowly

across a nonstationary texture field.

Even in uniform texture fields, it is difficult to

infer the primitive types and the placement rule. Some

textures orc cmbiguous, with more than one choice of

primitive. 7hc most Fppropricte primitives are those

corrcspondinq tc physical properties of the the impqe
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source. A gencrfl vision system, however, cannot b

strongly linked to a particular image source. Universal

primitives must 1e those occurring in nearly all texture

fields. Examples are maxima, saddle points, lines, edges,

and regions of uniform luminance. Such "sub-primitives"

are also useful in structural analysis of untextured image

regions [50].

It is plausible that these elementary texture

* primitives are the correct level at which to define

texture. Many biological visual systems contain spot and

edge detectors. In fact, there is evidence that the human

visual system transmits only edge information to the brain

(14], [51]. Tt seems reasonable, then, to describe a

texture by relationships of edges within it, or by

relatio.ships of lines, local maxima, etc.

The structural approach to image understanding is to

locate primitives and link them together into larqer

structures. A less rigid approach to texture description

is often used; it might be called "structurae-

statistical." Texture elements are identified and their

properties measured, then spatial distribution of the

primitive properties is described statistically.

The simplest texture measures record the observed

mixture of primitives, without regard to their spatial

relationships. These measures are appropriate for

textures generated by randomly placed or randomly selected

texture elements. It is assumed that each element is

independent of its neighbors; the texture may thus he
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described by its mixture density.

More complicated texture measures are needed when the

primitives themselves have variable properties. We may

still assume independence between primitives, but must now

use a more complex probability model. Tt becomes very

difficult to estimate the multidimensional density

function of a texture field unless primitives are very

numerous and simple.

We may also have to measure the spatial relationships

between primitives. Variables which may be mutually

dependent are the texture element types, properties,

orientations, and relative spacings or relationships. Tt

is believed that only peirwise relationships are of

importance to human perception [7].

It may be sufficient to record the observed mixture

of element pairs. Zucker (52] has suggested estimation of

the joint probability distribution for primitive pairs in

a particular spatial relationship, e.a. nearest neighbors.

More powerful methods are required when texture element

properties and spacings are related. Tt is not known how

much power is nceded for -nalysis of natural textures.

One primitive form is the maximal connected region of

constant gray level. Maleson et al. [531 suggest using

ellipsoidal approximations to such regions to simplify

shape description. Measurable properties are size,

elongation, orientation, and tonel statistics.

Galloway [54) described coarsely quanti7ed textures
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in terms of gray level run lengths. Runs were measured in

several directions, each generating a matrix of qray level

versus run length counts. This is similar to

co-occurrence techniques. Comparative studies have shown

co-occurrence measures to be superior for terrain

classification [40] and characterization of Markov

textures [41].

Intensity extrema are the basis of several popular

14 texture measures. An extremum is an image pixel brighter

or darker than any neighboring pixel. Several researchers

[55], [56] have analyzed scan-line extrema. Measurable

rqualities include peak height and width, valley depth and

width, inter-peak distanc s, and density of extrema.

These quantities are not trivial to measure; several

definitions are in use. The desirability of extracting

features at several resolutions has led to hierarchical

decompositions of scan-line waveforms [571, [l1l.

Texture is a two-dimensional phenomenon; it makes

sense to seek two-dimensional extrema. Associated with

each peak is a "mountain" or connected region that may be

reached by a monotonically descending path from that peak

alone. Such "reachability sets" can be computed by

iterative algorithms. Texture features which may be

extracted from these mountains include height, area,

circularity, elongation, and direction of elongation [321.

One way to record these distributions is with

generalized co-occurrence matrices [581. Each measurable

property is quantized to a small number of levels. Then
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the observed traits are tabulated for ?l pairs of

adjacent texture elements, adjacent texture elements in a

given direction, or elements within a given radius of each

other.

Generalized co-occurrence methods suffer from

computational complexity. It is not easy to locate

texture primitives and to measure their attributes, nor is

it trivial to identify an element's nearest neighbors.

Another weakness is that the co-occurrence matrices are

quite difficult to update if the image window is shifted.

This makes it difficult to compute texture properties

around each image point.

2.6 Texture Segmentation

A texture measure should only be defined over F

uniformly textured region. Measures computed over a

multi-textured region will often be a weiqhted average of

component texture measures, but this is not quaranteed. A

homogeneity measure, for instance, will be very different

for a mixed texture than for any of its components.

Texture classifiers can be tricked into completely

erroneous identifications by composite textures.

A texture classifier must be given regions of uniform

texture over which to compute feature vectors. A

segmenter must be able to find these regions without a

priori knowledge of the textures or their context. The

puzzle of how to combine these two has yet to be solved.

A solution must exist, however, since biological vision

systems are able to segment textured images.
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Existing segmentation methods all renuire that region

interiors be smoother than border neighborhoods. They are

thus unsuitable for locating textured regions unless

textures can be transformed to one or more feature planes

with the property of region homogeneity. Chapter 8 will

present a good method of computing such feature planes.

The constituents of texture are so many and so varied

that it is difficult to combine them in a segmentation

algorithm. One method [461 is to segment on the cheapest

or most effective feature first, then on the next best

feature. This can lead to sequence-dependent results, but

is particularly effective ini purposive vision systems.

A method particularly suited to texture segmentation

is pixel classification, long used in analysis of

multispectral LANDSAT images. Each pixel has an

associated vector of spectral luminance responses. This

vector can be augmented with any number of texture

features computed over the immediate neighborhood of the

pixel. A classification algorithm then assigns a class

label to the pixel. Texture classes are usually known a

priori, but may also be derived from the image by cluster

analysis.

Suppose that we wish to classify an 8x8 image window

as one of several texture types. The method of maximum

likelihood could be used if we had enough information

about the texturc classes. We would estimate likelihood

of the observed pattern under each hypothesis, then choose

the texture class with highest likelihood. The trouble
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with this approach is that the required probability

distributions are 64-dimensional. Even for binary

textures it is nearly impossible to estimate such large

distributions. (264 1019 coefficients are required for

a full histogram.) The same amount of storage is needed

for 4x4 blocks of 16 gray levels.

Nonparametric methods have been proposed for

estimating and storing large distributions; see, for

example, set covering procedures of Read and

* Jayaramamurthy [591 and McCormick and Jayaramamurthy [601.

It seems sensible, however, to assume a parametric form

for the distributions whenever it is possible to do so.

Image gray levels seem to be well characterized by

statistical moments. Ahuja et al. [611 show that the

first few moments are as useful as the entire distribution

for classifying image regions. Some classification

procedures require that a particular parametric model be

chosen (e.g. Gaussian or Poisson) , but nearest-centroid

techniques require only statistical moments. Chapter 8 of

this dissertation will develop a texture analysis method

based on nearest-centroid pixel classification.

2.7 Summary

No one has yet developed a completely adecuate theory

of texture analysis. Indeed, no such theory can be

developed independent of the myriad physical processes

producing textures. It is possible, however, to correctly

segment and identify image textures using ad hoc measures

and simple algorithms.
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Some sets of texture measures are of more interest

than others. The set used by the human visual system is

of paramount importance, but not yet identified.

Theoretically tractable and computationally simple feature

sets are also important. Any useful set must be

computable and sufficiently complete to characterize

textures found in a given application area. Other

desirable properties are feature independence and the

ability to synthesize a texture from its feature values.

Structural methods first locate primitive elements,

then analyze spatial relationships. The texture must have

identifiable primitives, and the vision system must be

able to determine which primitives are present. It is

much harder to analyze such textures than i is to

generate them. In natural images, edioining texture

fields may be obscured by noise and blur. Fven with

complete knowledge of texture types, it may be difficult

to locate the primitives. We may have no a priori

knowledge, making it necessary to jointly estimate the

segmentation boundaries and the texture model within each

segment. Such methods are too knowledge-dependent for a

preliminary texture segmentation system.

The other texture models of this chapter are worthy

of investigation as micro-texture measures. We shell test

the efficacy of correlation, co-occurrence, and

statistical methods in Chapters 5 through 6. Tn Chapter 7

we shall introduce several sets of texture measures which

may be considered either statistical or an unusual

frequency-domain approach. Chapter 8 will develop the
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best of these texture measures into a texture analysis

system.
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CHAPTER 3

EXPERIMENTAL METHODS

An optimal vision system would have components that

are jointly optimal rather than individually optimal.

Unfortunately texture segmentation is too poorly

understood to allow even componentwise optimization. We

are faced with a chicken-and-egg puzzle: each step must be

developed in the context of all others. The best we can

do under the circumstances is to fix those components for

which we have a rationale, and to iteratively improve all

other components. Fixed choices are discussed in this

chapter; experimentally determined results are given in

following chapters.

3.1 Segmentation

We desire a segmentation method that is fast,

insensitive to noise, and theoretically tractable. It

should use little storage, work with any texture type,

detect both large and small regions, and adjust for a

priori probabilities or external knowledge.

Any segmentation method might be made to work. We

shall restrict our attention to pixel classification. Tt

satisfies all of the above recuirements, provided that

suitable texture measures can be found.

Two cases must be considered: true classification Pnd

blind segmentation. True classification requires that the
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possible region types be known beforehand; we need simply

assign a region type to each pixel. Blind segmentation is

the grouping of pixels into regions without a priori

knowledge of region characteristics. The classification

approach to blind segmentation uses cluster analysis to

determine the region types present, then classifies each

pixel to one of these types. This could be followed by an

editing phase that would attempt to assign meaningful

labels to the regions.

Either case requires a classification alqorithm.

There are many to choose from, including nearest-neighbor,

k-nearest-neighbor, mayimum likelihood, and seauential

decision methods. For true classification, we shall

choosE one of the simplest: nearest centroid

classification. This algori.thm is fast, easy to

implement, and requires little storage. Tts theoretical

basis is documented in Appendix C.

The nearest centroid algorithm works well providing

that suitable texture dimensions can be found. Tt is

necessary that texture samples form well-separated

globular clusters in the feature space. Elongated

clusters, classes with multiple clusters, and dense

clusters within sparse ones would all cause errors

avoidable with more sophisticated techniaues.

Fortunately, the statistical technioue of discriminant

analysis is available to identify good features. We shall

assume that optimization of the feature space is a

sufficient substitute for joint optimization of the

feature space and classification alqorithm.
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Statistical analyses are of two types: those with a

known objective function and those analyzing the structure

of data without regard to an objective function. The

former type is characterized by work of Tamura et al. [9),

in which perceptual scales for coarseness, directionality,

and other features are constructed from observers' ranking

of images. These scales are then matched by linear

combinations of measured features. Another example is the

work of Zobrist and Thompson []], in which perceptual

effects of known texture transformations are measured and

modeled. The limitations of these methods lie in the

experimenter's ability to invent scales measuring

fundamental textural or perceptual dimensions.

The other statistical approach seeks fundamental

texture dimensions in the correlation structure of the

input data. This study uses discriminant analysis to

identify useful features for texture classification.

Discriminant analysis is a fairly well developed

statistical method for choosing linear combinations of

features which best classify data from a set of source

classes.

Available methods are all linear analyses.

Nonlinearities may be introduced by including products and

quotients of texture measures, but such terms are seldom

fundamental and are difficult to interpret. Of course,

the analysis can be no better than the data. After

studying one analysis, it is often possible to compute

better features as input to the next.
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Useful texture features may correspond to human

visual measures or to natural texture dimensions. It has

not been proven that natural texture dimensions exist, but

there is evidence that humans and some lower animals have

very similar perceptions of texture. It seems likely that

natural texture dimensions exist and that natural vision

systems have been selected and trained to use them.

* Research presented here incorporates perceptual

factors in three indirect ways. First is the choice of

images to be used. This study uses a number of images

that are visually similar, yet differing in some obvious,

unspecified manner. This comes as close to e controlled

experiment as can be managed with natural textures. The

purpose of the experiment is to learn what features make

the images visually distinct.

Second is the choice of texture measures to be

computed. Some of these may be chosen for theoretical

reasons, but most simply seem plausible. Some measures

attempt to model anatomical processing, such as edqe and

spot detectors. Others are chosen to measure hypothesized

differences in the selected texture images.

Third is the analysis of statistical results. Here

the experimenter's subjective knowledge enters.

Statistical analysis will eliminate many bad features, but

may discover chance combinations of features with

significant discriminatinq power. Tt is up to the

t - experimenter to decide what is being measured by feature

combinations, which of several correlated features are
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most fundamental, and how to modify features to make them

better.

3.2 Feature Selection

Classification accuracy is a function of the number

of features available and the joint information of those

features. It is also a function of the method used to

select or combine features.

The primary tool of this research is discriminant-

analysis. Feature vectors computed over imaqe windows are

fed to the discriminant routines of the Subroutine Package
for the Social. Sciences (SPSS). These descriminant

algorithms are documented in Appendix C. Source textures

are known, so that cluster analysis is unnecessary. The

goal is similar, however: to find linear combinations of

features that separate data vectors into compact groups.

One could search for fundamental tcxture features by

analyzing differences between pairs of images. Tt is

likely, however, that each pair differ along a combination

of fundamental dimensions. The analysis might identify

some discriminating features, but would leave unclear i-he

nature of the true texture dimensions.

Analyzing many textures at once is more likely to

discover fundamental dimensions, if they exist.

Discriminant routines identify the best axis, then the

best orthogonal axis, and so on. The axes are best in the

sense of a Karhunen-Loeve or eigenvector coordinate

transform. It is quite likely that the human visual

system uses correlated feature measures, but the expense
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of such an analysis is not justified by the quality of our

present texture descriptors.

Discriminant functions, computed as eigenvectors of

certain statistical matrices, serve three purposes. They

identify natural data dimensions, permit data reduction

for simpler classification functions, and provide natural

axes for visual display of clusters. A display of data

points in the primury discriminant plane conveys a great

" deal of intuitive information difficult to discern in

. tables of numbers.

A more quantitative description is provided by the

weights of features used to compute the axis values.

These coefficients are given for input variables

normalized to zero mean and unit variance. The

coefficients thus show relative weight or importance of

each component feature.

Computed texture dimensions must be judged by their

ability to classify the input vectors. Techrically it

would be better to classify an independent set of texture

vectors, but classification of the training set is a

useful experimental tool. More rigorous validation need

be applied only to the final texture model.

Two data clusters in a multivariate space are

maximally separated along a single axis. Three clusters

can be discriminated in a plane, i.e. along two axes. The

number of possible discriminant axes is one less than the

number of groups. The number of useful discriminant

functions may be even smaller if date clust rs t-end to
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line up or occupy low-dimensional subspaces.

Classification functions, one for each texture group,

can be derived from the discriminant functions. A data

vector may be classified by evaluating each function and

assigning the vector to the group with the highest score.

The method assumes multivariate normal distributions with

identical covariance structutc. Prior probabilities for

the classes are usually assumed equal.

3.3 Texture Data

In an experimcntal study, the results can be no

better than the input data. We recuire a set of uniform

texture fields large enough to provide adeouate samples of

each texture. Ideally this training set should come from

a target application area. For a genera] vision system,

however, each texture must be a "natural" one, and the set

must include a range of natural texture dimensions. We

avoid artificially generated textures, such as sinusoidal

gratings, because they would favor the Fourier *ransform

anC other frequency domain measures.

The texture images we have chosen are from an album

by Brodatz [621. High quality prints obtained from the

photographer were scanned and digitized at the USC Image

Processing Institute. The images are 510x512 pixels

quanti7ed to 256 qray levels. This is sufficient for

extraction of 256 nonoverlapping 31x3l blocks from each

texture field. Most of the texture samples in this study

will be 15xl5 feature plane blocks computed within 17x17

or 19x19 blocks of imaqe data. The larger image window is
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used only to prevent contamination of the samples by

border effects, and is unnecessary when texture measures

are computed for every pixel in an image.

Initial data analyses for this study were carried out

on the four Brodatz textures in Figure 3-1: Grass,

Raffia, Wool, and Sand. Pratt et al. used 64x64 blocks of

these same images for visual discrimination experiments

[81 and for theoretical discrimmnability studies [631.

Ashjari [64] has investigated singular value decomposition

as a tool for discriminating 32x32 blocks of these

textures. Additional texture dimensions have been

introduced with the textures in Figure 3-2: Pigskin,

Leather, Water, and Wood.

The textures have been chosen precisely because they

are difficult to discriminate. They are a worst case

dataset. Raffia, Wool, and Sand may be considered

cellular textures with similar cell izes. Grass And Sand

have similar statistics, with the main difference being

the extended edges in Grass. Pigskin has statistics

similar to those of Sand, but lacks the cellular edge

structure. Leather has edge structure similar to Crass,

a&though the textures are perceptually guite different.

The Wood and Water images have much stronger vertical

structure than Grass.

3.4 Preprocessing

The trxturc images were not taken under completely

controlled conditions. They differ in illumination,

contrast, and possibly fi IT typ- or dpvelopinq process.
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(a) Grass (b) Raffia

(c) Sand Cd) Wool

Figure 3-1. Experimental Textures



(e) Pgskin(f) Lpthe

(g) Wter () Woo

Figur 3-2 Addtionl Teture
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These differences introduce monotonic transformations of

the image function, and we must desiqn our texture

analysis system to be invariant to them. We shall not

worry, however, about spatial transformations such as

geometric warp and linear filtering. The removal of known

warps is well understood, but estimation of spatial

transformations from texture date awaits a better

understanding of texture.

There are two approaches to compensating for unknown

* monotonic transformations. One is to alter the entire

image, reducing it to some canonical form. The other is

to develop texture measures invariant to monotonic

transformations.

We have chosen a compromise technique: histogram

equalization [65], [66] of the entire image coupled with

texture measures compensating for local mean and standard

deviation. This partially corrects for an effect noted by

Sklansky [67]:

Most images are dominated by low frequencies that
carry little information about the scene. These
low frequencies consume a large range of grey
level quantization cells with little benefit to
the viewer. Hence before any histogram
transformations are carried out it is useful to
suppress (but not eliminate) the low spatial
harmonics... [p. 240]

The texture fields used in this study are sufficiently

uniform that prior filtering would gain little.

There are several rationales for histogram

equalization. Sklansky sees it as an ecualization of

local contrast across an image. Other authors have
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considered it a maximum entropy transform since it

maximizes the amount of information conveyed by a given

number of gray levels. Certainly the transformation

improves the appearance of low contrast images, but this

is true even if the number of grey levels (hence the

information content) is greatly reduced. Frei [681 found

histogram hyperbolization even more visually pleasing; it

is believed that this shape is converted to e uniform

histogram by the logarithmic response of the human eye.

Ashjari [641 uses histogram Gaussianization to prepare

texture data for classifiers based on Gaussian

assumptions.

It should be noted that such standardization

sacrifices information. Sklansky [671 reports:

We have found that certain diaqnostically
significant textural features in xeromammograms
are strongly related to infrequently occurring
gray levels in the tails of certain shapes of
histograms. Because these gray levels occur
infrequently, histogram equalization inhibits
rather than enhances the extraction of these
features. [p. 2431

Conners and Harlow [69] found, however, that histogram

equalization was essential for proper analysis of

radiographic images.

Images normalized to e common mean and standard

deviation are easily discriminated by their skewness 4nd

kurtosis measures. We have appliei histogram eoualization

to remove all first-order differences. This elso finesses

the problem of whether to meesure image luminance or

density, since the standardization will qive the same

result for either.
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Cur histogram equalization routine is given in

Appendix A. It follows Conners' algorithm [411, modified

to fit new quantization levels to a constant percentage of

total probability rather than a percentage of remaining

probability. For natural images this algorithm works

well, although it will give slightly different results

when starting from one end of a histogram than it would if

started from the other end. It is possible to construct

pathological cases for which the mean square error

*compared to a true uniform histogram is much greater than

for optimal equalization as found by a search algorithm

[70].

Global equalization is valid for experimental studies

on reasonably homogeneous texture images. A general

vision system, able to identify textures in scenes with

varying illumination, requires stronger equalization.

Either the computed texture measures must be invariant to

luminance and contrast changes, or adaptive local

equalization must be used.

This study uses a simple adaptive equalization.

First global equalization is used, then each sampled

texture window is scaled to have a constant mean and

standard deviation. The method is not suitable for

moving-window equalization around each image point, but

the same effect could be achieved with luminance-invariant

and contrast-invariant texture measures. Texture

discrimination results will be reported for both the

globally equalized and the adaptively equalized texture

'.. samples. There should be little difference if the source
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images are homogeneous.

3.5 First-Order Statistics

A texture field is an extended entity composed of

repetitions of similar local primitives. We require,

therefore, global measures of local properties. These

global measures must be statistical since they must be

shift-invariant and insensitive to random texture

variations. They should also be easy to compute since

large windows are involved.

Global features characterize the whole texture rather

than its elements. The computing window must be large

enough to enclose a representative sample of the texture,

so that feature values change little as the window is

shifted within a texture region.

The set of statistical moments are particularly good

global measures. Consider a window placed on an imagp, or

on any feature plane computed as a transform of the imaqe.

One likely texture measure is the averaqe velue within the

window. Another is the standard deviation. Skewness and

kurtosis are also good candidates, Plthouah somewhat

harder to explain. Tt is known that the histogram of an

8-bit feature plane can be completely characterized by 4

set of 256 such statistics. Statistical moments Pbove the

fourth, however, are likely to be unreliable and to have

little energy or importance. This study will determine

whether the first four moments are useful.

The basic statistical moments of a window !re

k
Mk = E [I (r,c)J
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where E denotes the expectation operator. The moments may

be estimated by

2 k
Mk = (1/n) I (r,c)

r ,c
It is convenient to standardize higher moments to remove

the effect of mean and standrard deviation. Statistical

moments used in this study ere of the form

AVE = E [I(r,c)]

*VAR = E I(I(r,c)-AVE) 21

*SKW = E I(I(r,c)-AVE) 3/ VAR 3 /2

KT= E f(I(r,c)-AVE) 2 A

These corrected moments may be estimated by

AVE = Ml (-1-1)

VAR = M2-M1 2  (3-2)

SKW = (M3-3(M1)(M2)+2M1 3) VAR 3/2  (3-3)

KRT = (M4-4(Ml) (M3)+6(Ml 2) (M2)-3M1 ) / VAR 2 (3-4)

The following transformations and block statistics

will also be used as first-order statistics:

ACV = SDV / IAVEI (3-6)

ASK = ISKWI (3-7)

AKR = KRT-3.OI (3-8)

MIN m in I(r,c) (0-9)
r ,c

MAX m ax I(r,c) (-0
r , c

RNG =MAX-MIN (3-11)
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MID = (MAX+MIN) / 2 (3-12)

The most fundamental first-order statistic is the

average. Histogram-equalization renders it useless on the

original image, but it is useful on feature planes

computed from the image. Computing the moving-window

average is equivalent to blurring or lowpass filtering the

feature plane.

Variance and standard deviation measure the

irregularity in a feature plane. These are important

features, and it is not known a priori which form is more

fundamental. Using both forms permits a linear analysis

to approximate nonlinear functions of the standard

deviation. Absolute coefficient of variation (ACV) is

also provided; for nonnegative distributions it is often a

better dispersion measure then the standard deviation.

Other moments may also be useful. Skewness measures

the extent to which outliers favor one side of the main

distribution. Kurtosis measures peakedness or the

presence of outliers: the kurtosis of a uniform

distribution is 1.8, that of a Gaussian is 3.0. Absolute

skewness and the absolute deviation of kurtosis from the

Geussian value (sometimes known as the "excess") 2re also

computed. Care has been taken to prevent computational

problems when the standard deviation is near zero:

skewness is set to zero and kurtosis to three. Large

values are also prevented by clipping both measures at

plus and minus six.

Th,- last four first-order fc(-turee -rr h thr- mirmum,
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maximum, range, end midrenqe of the window. 7]thouqh

common descriptors of uniform distributions, these

statistics are included primarily because of thrir

computational simplicity.

Computstion of the twelve statistics at every piciure

point can be done in a sinqlo pass. O-n a PDP L/l0 t-is

takes two minutes for a 512x512 image, reqardless of the

moving window size. The number of image rows kept in core

is equal to the number of rows in the window. Fach pixel

is examined only twice. A similar algorithm for computinq

moving absolute averages is documented in Appendix P.

3.6 The F-Ratio Feature Strength Measure

Throughout this dissertation, it will be necessary to

compare the discriminating powers of different fea,tures.

We could compare classification accuracies for thr

individual features, but an impracticl -rrour f of

computing time would be needed. T simpler comparison

statistic is the F-ratio. It is the ratio of inter-class

variance to intra-class variance.

A good feature will hcve a cluster of values for

samples from one texture field, and a different cluster of

values for another textur- field. Good features therefore

have high F-ratios. Actual values will not be important

here, but ratios with the same degrees of freedom (i.e.

sampled populaton sizes) may be compared.

F-ratios listed in this nd following chapters are

for 256 15x15 samples from each of the eight textures.

The F-ratios hove degrees of freedom 7 and 2040, making
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the probability less then 0.001 that a feature with no

discriminating power will have a ratio above 3.47. In

practice we find that ratios below 100 are of little

value. All discriminant functions and classification

accuracies cited in this study will be based on variables

with F-ratios of at least 40 after adjusting for all other

variables in the model. Thhe probability of a variable

having a ratio this large by chance is less than 10

, 3.7 Image Block Statistics

Table 3-1 shows the effects of various

standardization procedures on first-order information.

The table lists the F-ratio for each statistic, a measure

of its discriminating power for this set of textures. F-

ratios in the first column are for the original images,

before any type- of standardization. Tt is apparent that

the texture fielCs are e-sily discriminated by their

means, variances, r;nges -- in fact, by any of the first-

order statistics.

The last entry in the column shows that all twelve

features used together provide 85% classification

accuracy. It can be seen that even F-ratios above 2000 do

not guarantee perfect classification. A high ratio shows

that class means are separated along the feature

dimension. Tt does not mean thaf all classes are

separated, however. Classification accuracy is a better

indication of multiclass separation.

The second column is for adaptively standardized

images. The pixt-ls in =ch window wcre adjusted to have
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maximum, range, and midrange of the window. Although

common descriptors of uniform distributions, these

statistics are included primarily because of ths-ir

computational simplicity.

Computation of the twelve statistics at every pic+uro

point can be done in a sinqle pass. On a PDP Kt/0 this

takes two minutes for a 512x512 imege, regardless of the

moving window size. The number of image rows kept in core

is equal to the number of rows in the window. Foch pixel

is examined only twice. A similar algoritbm for computinq

moving absolute averages is documented in Appendix P.

r 3.6 The F-Ratio Feature Strength Measure

Throughout this dissertation, it wil. be necessary to

comLjare the discriminating powers of tifferent features.

We could compare classification accuracies for thN

individual features, but an impractical -mourt of

computing time would be needed. simpler comparison

statistic is the F-ratio. It is the ratio of inter-class

variance to intra-class variance.

A good feature will have a cluster of values for

samples from one texture field, and a different clustar of

values for another texture field. Good features therefore

have high F-ratios. Actual values will not be important

here, but ratios with the same degrees of freedom (i.e.

sampled populaton sizes) may be compared.

F-ratios listed in this and following chapters are

for 256 15x15 samples from each of the eight textures.

The F-ratios have degrees of freedom 7 and 2040, makinq

53



the probability less than 0.001 that E feature with no

discriminating power will have a ratio above 3.47. In

practice we find that ratios below 100 are of little

value. All discriminant functions and classification

accuracies cited in this study will be based on variables

with F-ratios of at least 40 after adjusting for all other

variables in the model. 'The probability of a variable

having a ratio this large by chance is less than 1.0-

3.7 Image Block Statistics

Table 3-1 shows the effects of various

standardization procedures on first-order information.

The table lists the F-ratio for each statistic, a measure

of its discriminating power for this set of textures. F-

ratios in the first column are for the original images,

before any type of standa rdization. It is apparent that

the texture fields are e-sily discriminated by their

means, variances, ranges -- in fact, by any of the first-

order statistics.

The last entry in the column shows that all twelve

features used together provide 85% classification

accuracy. It can be seen that even F-ratios above 2000 do

not guarantee perfect classification. A high ratio shows

that class means are separated along the feature

dimension. It does not mean that all classes are

separated, however. Classification accuracy is a better

indication of multiclass separation.

The second column is for adaptively standardized

images, ht pixEls in e;ch window were -djusted to have
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TABLE 3-1. TMAGE STATT TTC F-P!'TTOC

Or iginal
Feature Original Adaptive Globel Adaptive

IMGAVE 651 593 0 3
IMGVAR 1555 497 42 58
IMGSKW 625 595 6 9
IMGKRT 439 376 57 63
IMGSDV 1882 477 47 57
IMGACV 1593 554 5 54
IMGASK 502 461 40 30
IMGAKR 152 196 28 66
IMGMIN 1449 400 12 2
IMGMAX 386 619 59 10
IMGRNG 2004 473 68 7
IMGMID 575 637 34 7

Accuracy 84.81% 50.39% 19.82% 22. 27%

mean 127.5 and standard deviation 73.9, then were cIipped

to the range 0.0 - 255.0. The tablr shows that this

standardization reduces discriminability of the textures,

although the power of some first-ordcr fc;tLres is

increased. Joint classification accuracy is reduced to

50%. This adaptive alqorithm apparently does not work

well for grossly different first-order distributions. The

clipping step emphasizes Oifferences in skewness and

kurtosis; it also translates them into differences in

mean, variance, and other first-order features.

The third column shows results of histogram

eoualization on the original images. The procedure has [
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little effect on perceived texture I, but reduces first-

order discriminability. Classification accuracy for the

set of 12 features drops to 20%. Equalization has removed

nearly all first-order differences among the images.

Texture information is evidently contained in second-order

statistics of the equalized images.

The fourth column corresponds to histogram

equalization followed by adaptive standardization. This

is a form of adaptive histogram equalization. The

discriminating power of several features increases

slightly, apparently because of the nonlinear clipping

effect. Joint classification accuracy remains nearly the

same, 22%.

The above statistics show that histogram ecualization

is a useful preprocessing tecbnicue for temoving first-

order image differences. Such processing may not be

needed in a calibrated texture recognition system, but- is

essential for texture research with uncalibrated imaqes.

All images used in this study have been histogram

equalized. Texture measures have also been computed for

the adaptively equalized case since this additional

standardization is likely to be needed when classifying

small texture patches within natural scenes. Here the

eadaptive standardization has been performed by brute force

scaling of the image windows. It could also be

1All pictures in this document have been equalized. The
;L - only perceptual changes are an increase in contrast and

possibly a change in overage brightness.
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accomp!ished by alqebraic adjustment of computed texture

measures.

Note that the minimum classification accuracy undpr

this experimental paradigm is about 20%. Random

classification of eight textures would produce 12.5%

accuracy, but classification using random features may do

better. This is because the test combination of features

is chosen a posteriori. These features must give at least

12.5% accuracy, end will do significantly better if

training images have exploitable differences. Fven

identically distributed rendom fields can appear

statistically discrimincible if the number of samples per

texture field is less than three times the number of

independent features. This study guards against false

significance by using 256 samples per texture and a

minimum F-ratio of 40.

3.8 Comparative Measures

To judge the quality of newly developed texture

measures, it is desirable to apply them to the same date

used by other investigators. Unfortunately no common

database exists. We have implcmentrd co-occurrence -nd

correlation texture measures and have applied them Io the

Brodatz textures, each technique using the same 15x]5

window size. Each algorithm has been optimized to a

reasonable extent, but there can be no guarantee that a

faster or more powerful version could not be found.
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CHAPTER 4

CO-OCCURRENCE METHODS

This chapter investigates co-occurrence texture

measures, seemingly the most effective and widely used of

existing texture analysis techniques. The relative

discriminating power of individual co-occurrence features

will be measured, which is itself an important

contribution. We will also determine joint classification

accuracy on our dataset using all of the co-occurrence

features; this will establish a lower bound for acceptable

performance of other approaches.

4.1 Co-occurrence Measures

Co-occurrence matrices are a popular source of

texture features. For this study we generate each co-

occurrence matrix from a 15x15 source window reauantized

to 32 gray levels. Each matrix is thus 32x32. Vine of

these matrices are used, corresponding to horizontal and

vertical spacings of zero, one, and seven pixels. The

chosen spacings correspond to horizontal, vertical, an6

top-left to bottom-right diagonal directions. The P00

matrix records first-order information: all the entries

are on the diagonal. The other eight matrices record

second-order information. The matrices are not symmetric,

nor is there any averaging across different co-occurrence

angles.
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Many ways have been proposed for extracting texture

information from co-occurrence matrices. The commonly
2studied moments are called contrast , inverse difference

moment, angular second moment, entropy, and correlation.

The formulas are

CON = , (r-c)2 P(r,c) (4-1)
r ,c

P(r,c)
IDM = - - 2 (4-2)

r~c (r-c) 2

ASM = 2 (r,c) (4-3)

r,c

ENT = - P(r,c) log P(r,c) (4-4)

r,c
COR=Z (r-AVEr )(c-AVEc)P(r'c)

r,c (SDVr) (SDVc)

where

AVEr = (r)P(r,c)

r,c

SDV ( 'E Cr-AVE 2P(r,c)
r r

r ,c
Rectilinear and diagonal moments of the matrices will

be used as texture measures, as well as the ad hoc moments

of Equations 4-1 through 4-5. The rectilinear (horizontal

and vertical) moments of a matrix are

2Tamura et al. [9) found no correlation between
Haralick's CON moment and perceptual contrast. The
dcsignation hes become standard, however.
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Mij = (1/n2 ) E ri cj P(r,c) (4-6)
r,c

where P is the co-occurrence matrix and row and column

indices are computed relative to the matrix center.

Co-occurrence matrices have diagonal structure. Tt

makes sense to measure energy distribution relative to the

diagonals. Spatial moments in this orientation can be

measured by

Dij = (1/n 2) E (r + c) i (r - c) j P(r,c) (4-7)
r,c

Diagonal moments may also be computed from the rectilinear

moments. For instance:

D22 = M40 - 2(M20)(M02) + M04

Both rectilinear and diagonal moments will be tested

as texture features. Each spatial power will take values

from zero to two. Since the MOO and DOO moments are

identical, there are 17 moment features. The Haralick,

rectilinear, and diagonal moments computed for each of

nine co-occurrence matrices generate 172 independent

features.

4.2 Co-occurrence Results

Table 4-1 lists F-ratios for the common Paralick

moments of Equations 4-1 to 4-5. Only angular second

moment and entropy features are listed for the P00 matrix,

since the others are identically zero. It is interestinq

that P70 features have much more discriminatinq power than

P07 features. Evidently this texture set differs more in

its vcrtical statistics than in its horizontal stptistics.
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TABLE 4-1. HARALICK STATISTIC F-RATIOS

Feature Global Adaptive Feature Global- Adaptive

POOASN 60 46 POOENT 103 65

P01ASM 17 30 PlOASM 55 99
P01CON 168 275 PlOCON 744 681
P01COR 297 297 PlOCOR 644 632
P01IDM 290 326 PIOIDM 687 292
PO1ENT 71 71 PIOENT 278 239

PlIASM 15 17 P77ASM 45 43
P1ICON 38 32 P77CON 12 5
P1ICOR 34 36 P77COR 6 6

* P11IDM 31 41 P771DM 10 3
P1IENT 62 44 P77ENT 68 62

P07ASM 65 68 P70ASM 65 101
P07CON 24 15 P70CON 241 304
P07COR 14 14 P70COR 267 264
P071DM 16 6 P70IDM 355 213
P07ENT 123 105 P70ENT 157 143

P17ASM 64 64 P71ASM 41 43
P17CON 23 11 P71CON 82 80
P17COR 8 8 P71COR 57 58
P17IDM 16 4 P71IDM 64 35
P17ENT 117 97 P71ENT 83 65

This may be due to vertical structure of the Leather,

Wood, and Water images. P77 moments are also weak,

probably because this traininq set has no diagonally

streaked textures. Note the power of P01 and PIO

features. Weszka et a]. [401 also reported the dominance

of local co-occurrence features, and of local features in

general. They found that large-lag co-occurrence features

work best if computed on blurred images, but we have not

used blurred images in this study.
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Table 4-2 shows classification accuracies available

with various feature sets. The first analysis uses only

the ad hoc Haralick moments. Together, the 32 features

perform better than the best combination of the last

chapter. The globally equalized textures have two

dominant discriminant functions using PlOCON, POlIDM,

P70IDM, PllCON, P01CON, PlOIDM, PlOCOR, and PllCOR.

Discriminant functions for the adaptively equalized

* textures use PlOCON, P01IDM, P70CON, P1lCON, POICON, and

P71COR. Angular second moment, correlation, and entropy

features apparently carry little texture information.

TABLE 4-2. CO-OCCURRENCE CLASSIFICATION ACCURACY

Feature Set Global Adaptive

Haralick Moments 70.85 67.58
Rectilinear Moments 63.04 65.92
Diagonal Moments 56.60 63.04
Combined Moments 72.07 68.]6

The second and third analyses in Table 4-2 use the

rectilinear and diagonal moments, respectively. These are

the same moments computed on the autocorrelation matrices

of the previous section. Neither set is as powerful as

the Haralick moments. The first set of discriminant

functions are built primarily of Mll and M22 moments, the

second uses only D22, D02, and D20 moments. These facts

apparently reflect the diagonal symmetry of the co-
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TABLE 4-3. CC-CCCURRENCE MOMENT F-RATTOP

Feature Global Adaptive Feature Global Adaptive

P00M02 1 59 POOD02 2 1
P004MI 1 59 POOD1I 0 0
POOM20 1 59 POOD20 1 59

P01M02 1 45 PlOM02 1 50
P01MI1 30 281 P0OMI1 30 238
P01M20 1 43 PIOM20 1 49
P01M22 8 202 PIOM22 8 148

P11M02 1 40 P77M02 1 6
PiMil 10 41 P77MIl 13 8
P11M12 1 41 P77M12 1 3
P11M22 1 51 P77M22 1 14

P07M02 1 45 P70M02 1 14
P07M11 25 281 P70M11 187 257
P07122 1 40 P70M22 19 97

P17M11 24 8 P71MI 71 65

P01D02 168 275 PlOD02 744 681
P01D12 34 40 PlOD12 33 50
P01D20 8 195 PlOD20 7 92
P01D22 151 287 PlOD22 719 552

PlID20 3 47 P77D20 7 13

P07D02 24 15 P70D02 241 304
P07D20 12 21 P70D20 73 187
P07D22 6 18 P70D22 185 138

P17D02 23 11 P71D02 82 80
P17D20 12 11 P71D20 29 48
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occurrence matrices. Note that D02 moments are identical

to the Haralick CON moments. Table 4-3 shows the

discriminating power of individual rectilinear and

diagonal moments computed on the co-occurrence matrices.

Only those moments with ratios above 40 are listed. It is

possible, but rare, for features with lower individual

F-ratios to enter the discriminant model after the first

step.
I

The fourth analysis uses all of the co-occurrence

features together-. Classification accuracy is improved

slightly. The strongest of the globally equalized

features, PlOCON, is later dropped from the model. The

remaining features are P01IDM, P7TIDM, PlICON, P01CON,

PlOCOR, PIOD22, and P01COR. The adaptively eoualized

features are PIOCON, POlIDM, P70CON, PlICON, POICON, and

P71MII. Both sets identify two dominant texture

dimensions. Scatter diagrams of sample points against the

first two principal axes look very similar to plots for

the different moment types individually. The patterns are

also similar to those found with Laplacian and Sobel

features, although clusters are better separated. The

first discriminant function separates the directional

textures, Wood and Water, from the rest. The second

function separates Raffia from Wool and Leather. Least

3Some features had to be omitted from the analysis
because of an SPSS limit of 100 variables. All features
with F-ratios above 40 and all features appearing in
previous discriminant functions were made available, as
well as the maximum allowable number of less important
features.
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separated textures are Grass, Sand, and Pigskin.

4.3 Summary

Joint classification accuracy for these measures is

68%, or 72% for globally equalized textures. This is far

better than the 33% achieved with the correlation and

Markov statistics of the last chapter, and somewhat better

than the 65% possible with Laplacian and Sobel statistics.

The features of greatest use are the Haralick CON,

* IDM, and COR moments. The strength of these measures is

not surprising, considering their evolution over nearly a

decade. It is surprising that the full set of 172 co-

occurrence features has no more power than the 42 Haralick

moments. Evidently there is nothing to be gained by

studying new ways of extracting texture from co-occurrence

matrices.

6
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CHAPTER 5

CORRELATION METHODS

This chapter presents a particular method of texture

measurement based on autocorrelation statistics. The

* model will be developed only as far as seems necessary to

determine the efficacy of correlation statistics as

texture measures. Classification accuracies achieved with

correlation methods will be cited in later chapters as

standards of comparison. The best individual features

will be carried forward into the texture models of Chapter

6.

5.1 Correlation Measures

It- was mentioned in Section 2.2 that the

autocorrelation function is not a sufficient texture

descriptor. Discriminable textures can be constructed

with identical first-order statistics and autocorrelation

functions.

Faugeras and Pratt [631 have developed a new class of

texture measures that go beyond autocorrelation

information. They apply a whitening filter to the texture

field, then measure the first-order statistics of the

decorrelated image field. These statistical moments and

moments of the original autocorrelation function form a

set of texture features. It is possible to mimic the

original texture by generating a random field with the
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same moments and applying the inverse of the whitening

filter. The features extracted from several natural

textures have been compared using a Bhattacharyya measure;

results imply good classifying power with e very small

number of features.

The full whitening operation is very expensive to

compute. Faugeras and Pratt suggest that the image be

convolved with the Markov process whitening mask (MKV):

RC -C(l+R 2  RC
IVl2 2 2 2

- -- -R(+C 2) (l+R ) (l+C ) -R(1+C) (5-1)(1-R 2) (1-C 2) 2

RC -C(l+R 2) RC

where R and C are the horizontal and vertical nearest-

neighbor correlation coefficients. This operator will

completely decorrelate a Markov field for all lags greater

than one. Nearest-neighbor coefficients are scaled by

-0.5 and diagonal-neighbor correlations are scaled by

0. 25.

The R and C coefficients for 15x15 blocks of the

Brodatz textures range from 0.30 to 0.95, with the average

near 0.70. As the correlation coefficients approach

unity, the numerator of the whitening operator approaches

a Laplacian operator:

1 -2 1

LPL =- 4 -2 (5-2)

L1-2 1

Figure 5-la is the convolution of this mask with the
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composite texture image of Figure l-4b. Fiqure 5-lb is

the result of computing the standard deviation in a ]5x15

window around each pixel in the Laplacian image. This and

other feature planes will be evaluated in the next

section.

Another 3x3 operation suggested by Faugeras and Pratt

is the Sobel gradient magnitude. It is considered an edge

detector rather than a whitening operator, but empirical

evidence supports its use in texture discrimination. The

Sobel gradient is a 3x3 nonlinear operator weighted toward

the window center but omitting the actual center pixel.

The Sobel masks are

x -2 0 2 = 0 0 0

L-1 0 liL1 2 1

For each image position the Sobel magnitude is computed as

the root-mean-mean-square of the two weighted pixel sums:

SBL 42y2 (5-3)

This measure has been shown [711 to locate qray level step

edges about as well as any other popular edge detector.

Figure 5-1c shows the Sobel gradient magnitude for

the composite image. This operator emphasizes edge

structures in the texture fields. The 15x15 standard

deviation, shown in Figure 5-1d, is obviously less useful

than the Laplacian standard deviation.
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5.2 Correlation Results

The texture feature set we shell use consists of

moments of the autocorrelation function plus first-order

statistics of the Markov whitened image. Laplacian and

Sobel gradient magnitude operators will also be tried in

place of the Morkov dccorrelation operator. Texture

features based on theso 3x3 operators should be less

powerful then the adaptive M.Prkov features.

We shall extract texture information frow the

correlation matrices by computinq spatial moments. The

rectilinear and diagon;l moments are of the same form Fs

in Equations 4-6 and 4-7. cince tho MOO and DO moments

are identical, there arc 17 correlation features. The

twelve first-order statistics will also be computed for

each texture block "whitened" with thW Markov, Laplacian,

or Sobel operators, for a total of 53 independent features

per texture block.

Table 5-1 shows the discriminating power of
individual featur-s. It can be seen that moments of the

correlation function are very weak texture measures. The

Laplacian operator generates some very powerful texture

measures. Statistics of Markov whitened fields have much

less discriminating power, althouah kurtosis and absolute

kurtosis features are moderately qood.

Table 5-2 shows classification accuracies achieved

with various subsets of these texture features. The first

three rows correspond to features extracted from

autocorrelation matrices of the 15x15 windows. Fach
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TABLE 5-1. CORRELATION STATISTIC F-RATIOS

Feature Global Adaptive Feature Global Adaptive

CORMOO 15 15 CORDOO 15 15
CORM01 15 17 CORD01 10 11
CORM02 22 21 CORD02 6 6
CORM10 16 14 CORD1O 18 17
CORM11 23 23 CORD11 47 46
CORM12 7 10 CORD12 7 5
CORM20 14 14 CORD20 24 24
CORM21 9 -9 CORD21 5 4
CORM22 17 17 CORD22 15 15

MKVAVE 65 74 LPLAVE I I
MKVVAR 24 31 LPLVAR 707 609
MKVSKW 23 17 LPLSKW 22 1.6
MKVKRT 240 242 LPLKRT 251 250
MKVSDV 51 70 LPLSDV 851 700
MKVACV 1 1 LPLACV 1 I
MKVASK 29 29 LPLASK 48 46
MKVAKR 248 253 LPLAKR 261 263
MKVMIN 44 60 LPLMIN 429 374
MKVMAX 38 53 LPLMAX 512 444
MKVRNG 42 58 LPLRNG 571 488
MKVMID 6 7 LPLMID 13 11

SBLAVE 84 64 IMGAVE 0 3
SBLVAR 53 156 IMGVAR 42 58
SBLSKW 79 77 IMGSKW 6 9
SBLKRT 54 49 IMGKRT 57 63
SBLSDV 55 159 IMGSDV 47 57
SBLACV 112 105 IMGACV 5 54
SBLASK 79 77 IMGASK 40 30
SBLAKR 20 34 IMGAKR 28 66
SBLMIN 14 9 IMGMIN 12 2
SBLMAX 50 29 IMGMAX 59 10
SBLRNG 48 33 IMGRNG 68 7
SBLMID 50 25 IMGMID 34 7

p ___ ----__---- - ---- - -------
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correlation matrix is computed for horizontal and vertical

lags ranging from minus seven to plus seven. Tt is thus 

15x15 matrix, although symmetry reduces the number of

independent elements to 113. Correlation coefficients for

larger lags would be based on too few pixel pairs for

reliabil ity.

TABLE 5-2. CORRELATION CLASSIFTCPTTCN ACCURACY

Feature Set Global Adaptive

COR (Rectilinear)
COR (Diagonal) 19.63 19.92
COR 19.63 19.92

COR+MKV 31.71 33.11
COR+LPL 54.83 47.80
COR+SBL 32.47 38.67

COR+MKV+LPL+SBL+IMG 63.62 65.23
MKV+LPL+SBL+IMG 63.62 65.23

The first row of Table 5-2 is based on rectilinear

moments of the correlation matrix, as described in

Equation 4-6. Discriminant functions could not be

computed because none of these features have an F-ratio

above 40. The second row uses diagonal moments as given

in Equation 4-7. These are little better than the

rectilinear moments, although CORD11 has sufficient power

to generate a classification function. The third analysis

combines both sets of moments; aqain only CORDlI is
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useable. It is clear that moments of small-window

correlation functions have little discriminating power on

this texture set. They might perform better on

directional textures or textures differing strongly in

coarseness.

The next analysis combines autocorrelation features

with first-order statistics of the whitened block. The

plus sign represents the union of texture feature sets

rather than addition. Each block was whitened with the

Markov decorrelation operator of Equation 5-1. The

operator is adaptive since it uses the nearest-neighbor

correlation coefficients of each window in decorrelating

that window. Two discriminant functions were found, with

joint classification accuracy of almost 32%. The

principal component is essentially MKVAKR. No

autocorrelation feature is strong enough to contribute.

The next two analyses use nonadaptive 3x3 operations

in place of the whitening filter. The Laplacian of

Equation 5-2 works very well, identifying three texture

dimensions related to LPLSDV, either LPLKRT or LPLAKR, and

LPLVAR. The strong discriminating power of these features

contradicts the theoretical basis of this section, which

predicts superiority of the MKV features.

Faugeras and Pratt [631 proposed the Sobel gradient

magnitude, an edge detector, as an ad hoc replacement for

the decorrelation operation. As a texture detector, it

works little better than the Markov whiteninq filter. For

the globally equalized texture set, it identifies three
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texture dimensions related to SBLACV, SBLAVE, and SBLVNG.

For the adaptively equalized set it identifies four

dimensions based on SBLSDV, SBLASK, SBLVAR, and CORD11.

The final two analyses made all of the preceding

features available, with and without the correlation

moments. The IMG features of the last section are also

included: by themselves they have little discriminating

power, but they could be important in combination with

other features. Results of both analyses are identical

since the correlation moments are not strong enough to

enter into the model. The globally equalized textures

4produce six discriminant functions using LPLSDV, LPLAKR,

LPLVAR, SBLAVE, and SBLVAR. The adaptively equalized

textures generate seven functions using LPLSDV, LPLAKR,

LPLVAR, SBLSDV, IMGAKR, MKVSDV, SBLSKW, and SBLVAR. Tn

each case, the first three texture dimensions are much

stronger than the rest. They are based almost entirely on

standard deviations and variances of Laplacian and Sobel

features. Scatter diagrams, pairwise F-ratio tables, and

classification (or confusion) matrices show that texture

dimensions computed for the two cases are similar. The

least separated textures are Sand, Pigskin, and Leather.

The chief texture dimensions seem to be Wool versus Paffia

and Wood, and Water versus Raffia and Wool.

5.3 Summary I

It is clear that the local autocorrelation function

does not discriminate these eight textures, although it

may measure texture dimensions not represented in this

training set. This casts doubt upon the autocorrelation
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texture model, and o n the correlation-ba'sed linear

predictive methods of texture segmentation [181. The

success of Laplacian and Sobel texture transforms will be

explored further in Chapter 6.
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CHAPTER 6

SPATIAL-STATISTICAL METHODS

Structural texture measures share F common weakness:

discrete texture elements must be located, classified, and

studied before texture itself can be measured. This is a

severe computational problem even for simple artificial

textures, and is nearly impossible for noisy, blurred,

undulating, or stochastic textures. It would be

difficult, for instance, to identify a reasonable texture

primitive for the Pigskin image. Further, structural

methods inherently classify a texture field as a whole, or

at best classify discrete texture elements. They are

unsui~ed to the task of segmenting an image by classifying

each pixel.

We now introduce a more suitable class of texture

features, called "spatial-statistical." The name is new,

but many of the techniques are well known. Indeed, they

would be claimed by researchers in both the statistical

and structural camps.

The basic approach is to compute statistics of

various local image functions. These measures are spatial

because they depend upon local window functions rather

than single pixels. They are statistical in the sense

that statistical moments of an image window Ere invariant

to relative pixel positions: pixels of the intermediate
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functions could be shuffled without changing the composite

texture measure.

To recapitulate: we compute functions of an image,

e.g. by convolving with 3x3 masks, then compute the mean

and other statistics in a window around each pixe]. The

number of texture features measured at each point is the

number of image functions times the number of statistics.

Two window sizes are . actually used. The "micro"

window, used to compute spatial functions, is typically

3x3 or 5x5 pixels. The "macro" window for computing

statistical moments is typically 25x]5 pixels, Possibly

31x31 or larger. Odd window sizes are convenient because

they have well-defined center pixels.

The simplest micro-feature is the pixel value itself.

One may regard this as the average luminance over a 1x1

region of the original image source. Tn calibrated

imagery the pixel value has quantitative meaning, but

pixels in typical images have only a relative meaning.

This can invalidate some macro-statistics. One "cure" for

this is to standardize each input image to a particular

mean and contrast. The images used in this study have all

been requantized to have uniform first-order statistics.

Two popular measures of texture coarseness are edge

per unit area [321 and extrema per unit area [721. Each

is found by convolving a spatial operator wit-h the image.

The resulting feature plane may or may not be subjected to

thresholding (hard limiting), thinnir,, or adaptive

1-, . binarization. Then the response around each point is
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integrated and assigned to that point as a texture

measure. This last operation is equivalent to blurring of

the feature plane.

A measure similar to a local standard deviation has

been used by Hsu [731. He computed the averaqe deviation

of neighborhood pixels from the neighborhood average and

also from the intensity of the central pixel. These

operations will locate image edges, but will also locate

areas of high noise or high-frequency texture variations.
I

Recent evidence indicates that spot information is

the only data transmitted to the brain by the optic nerve.

The visual cortex then locates edge and line features from

the spot response plane [74]. These edge features seem to

be the principal determinants of perception f511, (141.

It is possible that a single type of primitive is

sufficient to explain the myriad varieties of perceived

texture, but it seems more sensible to use a larger set of

texture primitives. One set, borrowed from terrain

description, consists of peaks, pits, ravines, hillsides,

passes and saddles [751, [76]. Measures similar to these

will be investigated in this chapter.

Edge per unit area is generally considered a

structural-statistical texture measure. Indeed it is, if

the feature is computed by finding and counting discrete

edge elements. The spatial-statistical paradigm includes

this approach, but permits another: to compute the average

(and other statistics) of an "edgeness" measure computed

at each pixel. This saves having to determine a suitable
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threshold level. It is not known which method is more

powerful. Throughout this study the term spatial-

statistical will refer to the second approach.

In a sense, the micro-windows themselves are used as

primitive elements, but we shall reserve the terms texture

primitive and texture element for structure-s inherent to

the source texture. Properties related to these

primitives, such as edge per unit area, can be measured

without identifying the primitives themselves. The

methods are thus purely statistical despite any

theoretical dependence on structural elements.

Spatial-statistical methods are particularly

appropriate for noisy or blurred imagery where texture

elements cannot be identified with certainty. Very little
work has been done on the identification of structural

textures in the presence of noise, but effects of noise

and blur on spatial-statistical features are relatively

easy to model. A particularly tractable set of micro-

features, spatial moments, will be discussed later in this

chapter.

6.1 Window Size

This research uses micro-texture and macro-texture

measures. Micro-texture measures are computed within very

small overlapping windows. The windows are typically 3x3

or 5x5, small enough to make it unlikely that more than a

single texture region exists within the window. Macro-

texture measures are large-window summaries of the micro-

features. Macro-windows must be large enough to include a
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representative sample of the image texture. A method for

dealing with windows overlapinq more then one texture

region has been suggested by Laws [771.

There is no theoretical reason for limiting the

micro-window to 5x5; it could even be larqer then the

macro-window. The micro-window is typically small

because:

- Micro-features are oft n very expensive to
compute, taking time O(n log n ) or greater for
a window of size nxn. The macro-statistics we
propose are less costly and can be applied to
larger windows. They can be computed in
constant time regardless of the macro-window
size.

- Micro-texture features are designed to measure
local texture properties, while the macro-
statistics measure properties of the texture
field as a whole. The contrast between their
sizes is essential for characterizinq all but
the simplest textures.

- There is no guarantee that ny particular
resolution or window size will I- optimal for a
given analysis. Still, there F a tendency for
humans to request analyses reouiring the finest
resolution available from an imeq, end to
obtain imagery with resolution just sufficient
for the desired onclysis. We may i-hus assume
that very small windows can produce texture
features as powerful as the hiqhest resolution
features used by the human retina.

- Small window features work very wel) . Rosenfeld
and his co-workers [321, [781 achieved good
results computing edge per unit area with the
2x2 Roberts gradient. This study will further
support the power of such local operators.

It could be argue(. that micro-textures should be

computed over several window sizes. This is not a greet

computational problem, but multiple window sizes quickly
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create a large number of features. Five micro-features at

five resolutions described by five macro-statistics would

be 125 features to be computed, stored, and analyzed for

each of perhaps 250,000 image pixels.

Further research may prove that many window sizes

must be used simultaneously for proper texture

identification. This approach has been used f791, [91 in

edge detection and measurement of texture coarseness. It

seems plausible, however, that a macro-scale

characterization of micro-features is sufficient for

preliminary texture classification, with syntactic,

semantic, and special-purpose detectors invoked for

detailed analysis of interesting regions.

The size of the optimal macro-window clearly depends

on texture coarseness or regularity, as well as the

quality of the available micro-features. Tt is to be

hoped that one size will be found edeouate within any

given application. Multiple or adaptive window sizes

could be implemented only zt much greater expense.

6.2 Window Shape

When using Fourier descriptors, it is common practice

to multiply window elements by a shaping function. This

gives the most weight to center elements, progressively

less to pixels near window edges. Such weighting

functions have also found implicit use in the more

sophisticated edge detection operations, as in the Fueckel

operator f801, and even in simple operators such as the

Sobel gradicnt function. The technioue deserves

81



examination.

Weighted windows are used with transform methods

because digital transforms are inherently cyclic. Each

image block "wraps around" so that its left and right

sides are adjacent, as are its top and bottom. One way of

visualizing this is to imagine that the image block is

surrounded by replicas of itself. Weighting functions

which fall off toward the block edges reduce the sharp

transitions, or aperture effects, that may occur there.

The other reason for using weighted windows is to

reduce the effect of boundary overlap. A window covering

more than one texture region will produce hybrid or even

unpredictable texture measures. Window shaping reduces

the effect of contrasting regions near the window edges.

For non-transform applications, the best weighting

function depends on the average region size and shape

relative to the window size. Exact criteria are in the

realm of estimation theory. If it is known that the

window covers a single texture, there is no reason to

reduce the weight of any data. The most accurate

classification will be possible if the largest computable

window is used. Window shaping reduces the effective

window size and hence the classification accuracy. It

also adds to the computational burden, particularly since

moving-window update techniques cannot be used. This

study will not use weighted windows.
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6.3 Statistical Moments

The first-order statistics of Section 3.5 may also be

used as micro-features. We can, for instance, compute the

standard deviations within moving 3x3 windows and then

compute macro-window statistics within this feature plane.

Resulting texture measures would be called SDVAVE, SDVSDV,

etc. The name of a texture measure is composed of the

micro-statistic name followed by the macro-statistic name.

This section compares the local statistical features

with the IMG, Laplacian, and Sobel features discussed in

Sections 3.7 and 5.2. The AVE, SDV, SKW, and KRT micro-

features are simply small, continuously shifted versions

of the corresponding macro-features. They are computed

for each 3x3 or 5x5 window in the image, with the computed

value assigned to the center pixel. Macro-features are

then computed for ]5x15 windows in the feature planes.

Individual features with F-ratios above 100 are

listed in Table 6-1. The micro-window AVE features have

little power. SDV, SKW, and KRT do better, about as well

as SBL micro-features. None of these methods appronches

the Laplacian in power, although jointly the 3x3

statistical features have about the same power es the IMG,

LPL, and SBL sets together. The 5x5 measures perform less

well, presumably because they contrast less with the 15x]5

macro-statistics.

Joint classification accuracies are listed in Table

6-2. The largest feature set, using Laplacian, Sobel, and
1..

3x3 statistical features together, performs far better
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TABLE 6-1. LOCAL STATISTIC F-RATIOS

3x3 5x5 3x3 5x5
Feature Global Globe] Adaptive Adaptive

LPLVAR 707 - 609 -

LPLKRT 251 - 250 -

LPLSDV 851 - 700 -

LPLAKR 261 - 263 -

LPLMIN 429 - 374 -
LPLMAX 512 - 444 -

LPLRNG 571 - 488 -

SBLVAR 53 - 156 -
SBLACV 112 - 105 -

SDWAR 50 73 166 193
SDVSKW 97 37 105 34
SDVSDV 52 74 166 195
SDVACV 158 134 179 .136

SKWVAR 207 81 125 77
SKWSDV 245 99 164 94
SKWMAX 134 56 25 68
SKWRNG 244 151 49 130

KRTAVE 497 117 474 130
KRTVAR 181 54 178 55
KRTSKW 118 35 134 39
KRTSDV 234 67 228 69
KRTACV 150 57 144 52
KRTASK 118 35 134 39
KRTMIN 6 100 16 80
KRTMAX 184 83 157 90
KRTRNG 117 75 92 78
KRTMID 130 92 84 102
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than any previous texture measures. Neither type of

measure alone approaches this accuracy of 84%.

TABLE 6-2. LOCAL STATISTIC CLASSIFICATION ACCURACY

Micro- 3x3 5x5 3x3 5x5
Feature Set Global Global Adaptive Adaptive

ALPL 54.83 - 47.80 -

SBL 32.47 - 35.84 -

IMG+LPL+SBL 63.62 - 64.16 -

AVE 19.82 19.73 19.43 21.88
SDV 39.94 29.54 28.66 34.62

SKW 31.59 23.68 29.20 21.92
KRT 39.50 33.89 37.26 33.45
AVE+SDV+SKW+KRT 59.81 48.44 61.62 46.88

IMG+LPL+SBL+AVE
+SDV+SKW+KRT 84.57 65.63 82.52 67.82

It is apparent from the scatter diagrams (not shown)

that the two combined 3x3 feature sets, IMG+LPL+SBL and

AVE+SDV+SKW+KRT, are measuring slightly different texture

dimensions. This is confirmrd by the much greater

classification accuracy when both sets are combined.

Principal components of the globally equalized textures

are based on LPLSDV, KRTAVE, LPLAKR, (SBLACV), LPLVAR,

SDVAVE, SDLAVE, SDVSDV, (IMGASK), IMGMAX, SKWAVE, IMGAVE,

AVEACV, SKWVAR, and SBLVAR. Terms in parentheses were

dropped from the model as other terms were found to be

jointly more powerful. The adaptivcly ecualized t-extures

generate principal components usinq LPLSDV, KRTAVE,
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LPLAKR, SBLAVE, SDVAVE, LPLVAR, SDVSDV, (IMGRNG), SBLSDV,

SKWAVE, IMGMAX, and IMGVAR.

Surprisingly, the joint classification a6curacy is

lower when the 5x5 statistical moments are combined with

the 3x3 Laplacian and Sobel. Principal components for

both texture sets require LPLSDV, LPLAKR, and LPLVAR. The

globally equalized set adds KRTAVE, SBLACV, and SKWRNG;

the adaptive set requires SKWSDV, SBLACV, SDVAVE, and

IMGRNG. The 5x5 statistical moments add almost nothing to

the information in the 3x3 Laplacian and Sobel.

It is difficult to draw conclusions from the data

presented here. A set of simple 3x3 texture measures

evaluated over 15x15 blocks has been found to have

extraordinary discriminating power. The first two texture

dimensions are slightly rotated versions of those found

with co-occurrence methods. The least separated textures

are still Grass, Sand, and Pigskin. The first principal

component separates Wood from Wool, the second separates

Raffia from the other seven textures. The number of

terms, however, makes it difficult to say just what is

being measured. We shall continue our search for a set of

fast, effective texture measures.

6.4 Spatial Moment Masks

Since texture is a locally spatial phenomenon, we

must use local spatial operators to generate our feature

planes. Computation of spatial moments is equivalent to

multiplying an image window by a mask and then summing.

This is exactly what is done in convolution. It seems
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reasonable to convolve small spatial moment masks with an

image to produce a set of feature planes.

1, -1 0 1 1 0 1

H -1 0 - 1 0 I

MOO Mol M02

- -1-1 1 0 -1. -1 0 -1

1 1 J -I 0 1 j -1 0

Ml0 MIl M12

1? [3 1~ 1H
L ] -1 0 1 ] L) o 1 j

M20 M21 M22

Figure 6-1. 3x3 Spatial Moment Masks

The spatial moments of a local window are

Mij = (1/n 2) r 0 I(r,c) (6-1)

rc
It is assumed thot row and column indices are relative to

the window center, a nr that the computed moments are

assigned to thi- cent-r point as z feaiurc vector. The
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3x3 and 5x5 spatial moment masks are shown in Figures 6-1

and 6-2.

When spatial moments are computed over a probability

density, such as a co-occurrence matrix, it is often

desirable to relate higher moments to the center of the

probability mass, (M1O/MOO,MO1/MOO). For instance,

M20' = (1/n ) (r - Ml0/MOO) 2 I(r,c)

r,c
or

M20' = M20 - M102 /M00

The same normalization is often used in character

recognition systems to achieve shift invariance. For

small texture windows, however, such standardization makes

little difference. It is not worth the extra computation,

and may not even be appropriate.

Table 6-3 lists local moment features with F-ratios

above 150. MIOSDV, MlISDV, and M12SDV features are seen

to be extremely powerful. Several RNG features are also
outstanding, but will be found less important in

conjunction with the other texture measures. MOO, M02,

M20, and M22 features are seen to have very little power.

Note that the MOO moment is identical to the AVE micro-

feature.
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Figure 6-2. 5x5 Spatial Moment MFsks
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TABLE 6-3. LOCAL MOMENT F-RATIOS

3x3 5x5 3x3 5x5
Feature Global Global Adaptive Adaptive

M01VAR 258 177 587 427
MOlSKW 221 52 229 54
M01IRT 183 21 249 38
MO1SDV 274 183 618 424
M01ASK 198 24 208 26
M01IMAX 153 122 248 203
M01RNG 136 148 249 292

MIDVAR 797 601 909 797
M1OSDV 1490 1038 1486 1195
MIOMIN 944 698 956 725
MIOMAX 765 594 722 579
MIORNG 1388 1062 1407 1144

MIIVAR 837 609 713 603
M11KRT 185 61 196 69
MIISDV 1245 892 977 804
MIIAKR 183 22 194 25
MIIMIN 543 491 434 408
MIIMAX 506 429 418 363
M11RNG 773 678 628 581

M12VAR 769 584 865 746
M12SDV 1428 1003 1396 1120
M12MIN 883 633 885 634
M12MAX 704 541 644 506
M12RNG 1270 952 1259 982

M21VAR 266 177 621 431
M21SKW 206 49 212 51
M21KRT 167 27 229 47
M21SDV 284 182 652 429
M21ASK 180 24 188 25
M21MAX 154 103 249 178
M21RNG 141 119 263 244

TABLE 6-4. MOMENT CLASSIFICATION ACCURACY

5Feature Set 3x 5x5
Feature Set Glogal Gloal Adaptive Adaptive

Mij 81.05 65.67 77.00 67.72
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Table 6-4 shows classification accuracies on each of

the texture 'sets. The first analysis, with 81%

classification accuracy, uses MIOSDV, MllSDV, MIOVAR,

M12VAR, M01SDV, M21SDV, M01SKW, and MIIKRT. Scatter

diagrams for the first two texture dimensions are visually

different from those of previous texture sets, but the

pattern of group centroids is much the same. The first

* dimension separates Wood and Water from the rest; the

* second separates Raffia from Wool and Leather. The 3x3

adaptive case gives very similar results with M1OSDV,

MIlSDV, MI2SDV, MIOVAR, MO1SDV, M21SDV, MOISKW, and

Ml1KRT. The dominance of SDV and VAR macro-statistics is

obvious, micro-window moments containing odd powers are

also dominant; they are the ones with zero-sum masks.

Model features for 5x5 moments are similar to those

for 3x3 moments. A large decrease in classification

accuracy occurs with the larger micro-features. This

trend has been noted before. Tt may be an artifact of the

texture set, or an interaction of micro-window and macro-

window sizes. it may also indicate that the perimeter-

weighted moments are not as appropriate as center-weighted

statistics such as the Laplacian. The larqer micro-window

brings out the perimeter weighting of the spatial moments.

6.5 Rotation-Invariant Moments

Most investigators have chosen texture measures that

are invariant to rotation of the texture field. This is

partly because perceived texture, particularly perceived

coarseness, is little changed by rotation. The assumption

of rotational isotropy has also been used to reduced the
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number of measured texture features and to increase

statistical reliability of texture features by averaging

measurements in different directions.

There is a need for directional texture features.

Humans are able to distinguish horizontal line textures

from vertical ones, and left gradients from right

gradients. One application of directional texture

measures is the segmentation and interpretation of rock

strata in seismic images, There is also a need for

nondirectional texture measures, such as the Laplacian.

This section describes two methods of generating

nondirectional features from the directional spatial

moments of the previous section.

Assume that the image texture has a dominant

direction, such as a global gradient or a major Fourier

component. Let the camera or texture field be rotated

through an angle A, and let a = cos(A), b = sin(A). The

new moments can be computed from the original window as

Mij(A) = (1/n 2 ) (ar + bc) i (ac - br) j I(r,c)

r,c
Haralick computes several features of this form to measure

energy along co-occurrence matrix diagonals. Using the

binomial expansion it can be seen that these moments are

linear combinations of the Mij. For instance,

Mll(A) = -abM20 + (a2 - b2 )Mll + abM02

A better method of normalization has been developed

by Hu [811. He derives the following orthogonal set of

rotation-invariant moments:

RIl = M20+M02 92



R12 = (M20-MO2) 2+4M11
2

R13 = (M30-3M12) 2+(3M21-M03)
2

R14 = (M30+M12) 2+(M21+M03)
2

RI5 = (M30-3M12) (M30+M12) [(M30+M12) 2-3 (M21+M03) 2]

+(3M21-M03) (M21+M03) [ 3(M30+M12) 2_ (M21+M03) 2

R16 = (M20-M02)[(M30+Ml2) 2- (M21+M03) 2

+4Mll(M30+M2) (M21+M03)

* R17 = (3M21-M03)(M30+M12)[(M30+M12)2-3(M21+M03) 2

-(M30-3MI2) (M21+M03) [3(M30+Ml2) 2(M21+M03) 2

Maitra (821 suggests a set of ratios of these

functions which are invariant to contrast and scale

changes as well as rotation. We will call them "full

invariants," although they are not invariant to changes in

luminance level. In theory, they are also invariant to

scale changes, but this may not hold when the sampling

rate and window size remain constant. The moments,

modified to avoid negative roots, are:

FI1 = IRI21 / RIl

F12 = (R13 * MOO) / (R12 * R1)

P13 = R14 / RT3

F14 = (iR151 / R13

F15 = R16 / (R14 * RI)

F16 = R17 / R15

Both sets of invariant moments present computational

difficulties. Rotation-invariants R15 end R17 tend to
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"blow up" bectuse of the high powers involved. We have

corrected for this by scalinq the Mij terms by 1/255, in

effect scalinq the input data to the rangf zero to one.

Full-invariants give trouble because the denominators can

approach zero. We have set the auotient to zero if the

magnitude of the denominator is less than 0.00]1.

Note that these invariant moments, like f-h spatial

moments of the last section, are used only as micro-

features. They are computed on 3x3 or 5x5 windows, not on

the larger macro-windows. Application of the twelve

* mecro-statistics generztes 84 rotetion-invariant texture

features and 72 full-invariant features.

The invariants are non]linear transformation'- of the

moment feature plnes. They zre rotation invari,-nt in the

same sense as the statisticol moments of the ]l.Ft section:

the output of cich micro-window is thr-oret ica -ly

unaffected by rotation of the texture field around the

center of that micro-window. Tn practice, this is only

approximately true because of discretization and operturp

effects. Global effects of rotation are removed by the

macro-statistic computation, which is invariant to the

rotation or translation of the micro-windows.

Tables 6-5 and 6-6 show thr individual powers of the

rotation-invariant moments and full-invariant moment

ratios. The tables show that R12, RI5, F13, and F14

micro-features are the most useful for texturp

description.

Table 6-7 shows that discriminating power always
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TABLE 6-5. ROTATTON-INVARTANT MOMENT F-RATIOS

3x3 5x5 3x3 5x5
Feature Global Global Adaptive Adaptive

RI2VAR 837 603 713 596
RI2KRT 187 59 198 66
RI2SDV 1244 875 976 789
RI2AKR 185 21 197 23
RI2MIN 547 501 437 419
RI2MAX 502 412 413 344
RI2RNG 773 673 627 575

RI3VAR 42 33 134 70
* RI3SDV 30 29 124 65RI3ACV 140 147 135 138

RI4AVE 62 64 91 132
RI4VAR 66 62 200 208
RI4SDV 65 63 204 225
RI4ACV 120 149 120 157

RI5AVE 193 153 481 368
RI5VAR 69 60 173 145
RI5SDV 74 70 199 203
RI5ACV 118 6 122 7
RI5MAX 376 278 283 244
R15MID 85 99 144 172

RI6MAX 114 101 80 75
RI6RNG 128 1.03 99 94

RI7SDV 82 86 41 107

.95
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TABLE 6-6. FULL-INVARIANT MOMFNT F-RATIOS

3x3 5x5 3x3 5x5
Feature Global Global Adaptive Adaptive

FIlAVE 53 63 379 772

FI2SDV 69 24 114 23

FI3AVE 247 46 177 42
FI3VAR 234 9 250 11
FI3SKW 197 12 147 8
FI3KRT 159 0 89 ]
FI3SDV 386 29 381 27
FI3ACV 319 36 378 32
FI3ASK 180 12 137 8
FI3AKR 149 0 86 1
FI3MAX 159 21 J53 19
FI3RNG 159 21 153 19
FI3MID 159 21 153 19

FI4VAR 245 18 264 i9
FI4SKW 258 19 220 12
FI4KRT 272 6 176 5
FI4SDV 314 41 331 36
FI4ACV 202 56 306 48
FI4ASK 187 19 168 12
FI5AKR 184 6 140 5
FI4MAX 147 24 133 20
FI4RNG 147 24 133 20
FI4MID 147 24 133 20

FI5VAR 173 65 196 184
FI5SDV 227 81 240 204
FI5MIN 175 88 99 58
FI5MAX 186 102 111 113
FI5RNG 265 124 140 121

FI6SDV 151 8 106 5
FI6RNG 106 8 67 5
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decreases as more invariance is added. The 3x3 rotation-

invariant features still perform very well, better than

co-occurrence measures. Adaptive equalization has little

effect on the classification accuracies; surprisingly, it

has less effect on rotation-invariants than on full-

invariants. Globally equalized textures use RI2SDV,

RI2VAR, RI4AVE, RI3AVE, RI2AKR, RI5AVE, RI6ACV, and

RI6AVE. AVE macro-features are apparently of use because

of the nonlinear product terms involved in computing these

moments. Discriminant functions for the adaptively

equalized textures use RI2SDV, RI5AVE, RI4SDV, RI3SDV,

RI2KRT, RI2VAR, RI4AVE, RI6SDV, RI6AVE, and RIlVAR.

TABLE 6-7. INVARIANT CLASSIFICATION ACCURACY

3x3 5x5 3x3 5x5
Feature Set Global Global Adaptive Adaptive

RI 74.17 54.25 74.17 57.37
FI 53.27 30.47 56.69 37.26

Full-invariants are nearly invariant to texture as

well as to rotation and contrast. It must be concluded

that contrast invariance is better achieved by global or

macro-window equalization than by micro-window

equalization. Rotation invariance, when required by a

particular application, can be obtained at little cost

with the RI features or the local statistical measures of
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the last section.

6.6 Joint Moments

Nonlinear functions can be introduced by squaring or

otherwise transforming window elements prior to computing

moments. Let

Mijk = (1/n 2 ) r i c I k(r,c) (6-2)
r,c

This reduces to the spatial moments when k - 1 and to the

statistical moments when i = j = 0. It is possible that

the joint moments are more powerful descriptors than the

spatial and statistical features together.

Preliminary trials proved that the texture features

of Equation 6-2 are of no use for k # I. This prompted

the correction of higher moments for the k = I and k = 2

moments. The correction formulas are exactly analogous to

Equations 3-1 through 3-4. This section will investiqate

the 432 features generated by the twelve macro-statistics

applied to the corrected Mijk for i and j ranging from

zero to two and k ranging from one to four.

Table 6-8 shows that only the AVE, VAR, and SDV

macro-features are very strong, and then only for 3x3

micro-features. The only class of micro-features worth

computing is the Mijl set, which is identical to the Mij

set of Section 6.4. It is surprising that better

classification accuracies are not achieved, considering

the enormous computational resources thrown at the

problem.
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TABLE 6-8. JOINT MOMENT CLASSIFICATTON ACCURACY

3x3 5x5 3x3 5x5
Feature Set Global Global Adaptive Adaptive

M0Ok 56.05 48.44 62.30 46.88
Molk 54.30 36.43 48.19 38.43
M02k 56.79 19.63 53.27 -
Ml0k 48.54 44.19 47.41 45.41
Mlk 45.85 39.01 41.65 36.23
Ml2k 48.10 43.31 46.39 45. 17
M20k 36.77 24.71 45.17 20.75
M21k 52.20 36.91 49.02 36.91
M22k 48.10 21.53 41.31 -

Miji 81.05 65.67 77.00 67.72
Mij2 66.75 57.52 70.26 58.64
Mij3 62.50 45.75 58.20 48.0
Mij4 62.40 57.86 63.33 55.18

MijkAVE 83.01 65.14 69.63 56.88
MijkVAR 78.03 64.26 80.37 68.99
MijkSKW 54.98 42.04 57.86 40.92
MijkKRT 53.56 41.85 54.69 38.96
MijkSDV 80.96 67.14 83.54 69.48
MijkACV 54.20 42.77 61.52 43.41
MijkASK 42.92 33.25 58.11 32.47
MijkAKR 37.89 38.38 38.57 39.06
MijkMIN 62.06 57.23 54.74 56.64
MijkMAX 52.54 50.54 53.27 49.27
MijkRNG 60.79 60.06 59.42 59.91
MijkMID 60.01 47.75 55.57 41.02

6.7 Combined Moments

This section combines the IMG, LPL, and SFL micro-

features with the 3x3 and 5x5 AVE, SDV, SKW, KRT, and Mij

micro-features. Twelve macro-statistics ,re computed for

each of the 29 micro-feature planes, qenerating 348

texture measures.

The first section of Table 6-9 shows that 3x! moments
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TABLE 6-9. COMBINED MOMENT CLASSTFICATION ACCURACY

Feature Set Adaptive

3x3 88.67
5x5 73.73
3x3+5x5 85.25

3x3 VAR+SDV 84.08
3x3 VAR 82.37
3x3 SDV 86.04

contain more texture information than 5x5 moments. In
I

fact, when both are used none of the 5x5 measures enter

the discriminant functions. They contain no information

which is not more easily extracted from 3x3 measures.

This does not mean that a particular 5x5 feature measures

exactly the same thing as the corresponding 3x3 feature,

but that the set of 5x5 features contains the same texture

information as the set of 3x3 features.

The second section shows that standard deviation

macro-statistics of the 3x3 moment planes contain nearly

as much information as all twelve macro-statistics.

Variables required for 86% classification accuracy are

MIOSDV, LPLSDV, MlISDV, MO1SDV, Ml2SDV, M20SDV, KRTSDV,

SDVSDV, and M02SDV. If some of these variables were

unavailable it is ouite likely that others among the 348

could be found to provide the same information. A scatter

plot of the eight texture classes against the first two

principal axes looks very similar to those produced with

co-occurrence and other texture features.
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6.8 Ad Hoc Masks

Many researchers have suggested texture measures

based on edge per unit area or average Laplacian. Our

experimental results, documented in the next chapter, show

that these are wise choices. Standard deviations of 3x3

spot and edge measures are very powerful features.

Averages computed within thresholded feature planes would

be very similar.

The quality of these measures suggests further

experimentation. The following convolution masks have

been chosen as spot and ring detectors:

SPTI = -2 4 -] SPT2 = 4 -

1 -2 1-0-1 0

SPT3 = [1 8 -I SPT4 = [ 4
-1 - 0 -1

SPT5= 1 4 1 SPT6 = 1 0 ]
.-2 1 -2. -1 -1

Note that the SPTI mask is the Laplacian of previous

sections. The coefficients of these masks sum to zero,

making computed texture measures invariant to luminance

shifts. Otherwise there was no particular theory behind

the selection of these masks.
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Elongated spots can appear as thin lines. These may

be dctected with the following masks:

LNEJ = 2 -1 LNE2 2 2 i
1 2 -1 :- -1.

LNE3= -1 0 -] LNE4= 0

0 1 U-1 0 U

LNE4 texture measures are the same as the Mi measures

suggested in Section 6.4.

Large spots, lines, and regions may be sensed by edqe

detectors. We shall use

1] 02[ 22] -
EDGI = 0 EDG2 0 0 0

0 1 1

EDG3 - 0 EDG4 0 0 0

-- 2]0o 1-[1 2 2]
The first two masks are identical to the MO and M10

spatial moment masks.

There is anatomical evidence that the eye cont.ins

separate detectors for bright spots end for dark spots.

There may also be neurons which respond similarly to both

positive and negative spots. We can test such texture
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features by measuring response magnitude. Using magnitudes

is also a way of introducing nonlinearities in the

discriminant functions. Absolute values of the micro-

features will be denoted by

ASPi = ISPTij

ALNi = ILNEil

AEDi = IEDGil

The notation is meant to indicate absolute response to a

mask rather than response to an absolute mask. Micro-

feature ALN4 has not been computed.

rEdge detectors in common use respond equally to edges

in different directions. Rotation-invariant micro-

features used for this study will be

ILNI = #(LNE)2 + (LNE2)2

ILN2 = ALN3

IEDI = J(EDG1)2 + (EDG2)
/ 2 2

IED2 = (EDG3)2 + (EDG4)02

Again, the notation represents feature plane operations

rather than operations on the convolution masks. IEDI and

IED2 are commonly known as the Prewitt and Sobel edge

detectors.

Tt turns out that these local moments provide

exceptionally stronq texture measures. When run with the

combined moments of the previous section, these features

are the only ones entering the discriminant functions.

(Of course, some of these features are duplicates of the
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LPL, SBL, M01, M10, and Mi fc.tures.) 'h stistic-e

moments of Section 6.? were not made '?i1lbt, bu -byv

have been shown less powerful than the spptial moment

features.

TABLE 6-10. AD HOC MOMENT CLASSIFICATION ACCURACY

3x3 3x0
Feature Set Global Adaptive

SPT 76.81 74.07
LNE 75.68 67.8?
EDG 68.46 64.60

ASP 74.51 72.17
ALN 71.68 68.85
AED 69.58 67.53

ILN 47.61 54.64
IED 56.15 55.18

SPT+ASP 75.P3 72.46
LNE+ALN+ILN 73.78 74.61
EDG+AED+IED 66.50 69.29

AVE+VAR+SDV+ACV - 86.52
AVE+VAR+SDV 87.16 87.16
AVE+VAR - 86.28
AVE+SDV - 87.50

VAR+SDV 86.92 84.77
VAR 80.42 82.14
SDV 87.45 85.79

Table 6-10 shows the classification results with

various subsets of the ad hoc texture measures. None of

the single-type subsets perform well. Even the combined

subsets, such as SPT+ASP, do not perform well. Other
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experiments (not shown) indicate that several Spot and

Line features are needed. Edge features are also useful.

Absolute features are important, but rotation-invariant

line and edge features are of little use.

The final section of Table 6-10 is based on the

combined set of 30 micro-features, but with various

subsets of the macro-statistics. The first line,

AVE+VAR+SDV+ACV, is essentially equivalent to the entire

set of macro-statistics. The following lines show that

very little discriminant power is lost by using only the

SDV statistics. The differences between pairs of very

similar features, such as (EDG1SDV - EDG3SDV) , are of

great importance, epparently because the difference forms

a feature nearly orthogonal to the originals. Tables 6-1i

through 6-13 show the discriminating powers of individual

features. Lines with no F-ratios above 200 have been

omitted. Interestingly, none of the SPT3, SPT4, SPT5, or

SPT6 features were of this strength, nor were the absolute

versions of the same features. Only the SPT3 features

even came close. It is difficult see why this should be

SO.

Also missing are the rotation-in,,ariant Line features

and most of the rotation-invariant Fdqe features. Only

the Prewi t operator, IEDI, has a ratio above 200.

Evidently, edge per unit area texture measures should be

based on directional gradients rather than gradient

magnitude.

The difference in strength between LNE3 and LNE4
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TABLE 6-11. AD HOC SPOT F-PATIOS

Feature Global Adaptive Feature Global Adaptive

SPT1VAR 707 609 SPT2VAR 280 268
SPT1KRT 251 250 SPT2KRT 144 178
SPTISDV 851 700 SPT2SDV 293 274
SPTIAKR 261 263 SPT2AKR 41 47
SPT1MIN 429 374 SPT2MIN 192 183
SPTIMAX 512 444 SPT2MAX 316 285
SPT1RNG 571 488 SPT2RNG 376 336

ASPIAVE 849 690 ASP2AVE 252 233
ASPIVAR 665 607 ASP2VAR 364 382
ASP1SKW 216 225 ASP2SKW 128 156
ASPISDV 784 671 ASP2SDV 359 355
ASP1ACV 318 354 ASP2ACV 172 219
ASPIASK 216 225 ASP2ASK 128 156
ASPIMAX 519 449 ASP2MAX 327 291I- ASP1RNG 518 499 ASP2RNG 327 291
ASPIMID 519 450 ASP2MID 327 291

-- -
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TABLE 6-12. AD HOC LINE F-PATTOS

Feature Global Adaptive Feature Global Adaptive

LNE1VAR 182 292 LNE2VAR 581 499
LNE1KRT 387 455 LNE2KRT 31 30
LNE1SDV 231 364 LNE2SDV 1068 810
LNE1AKR 271 299 LNE2AKR 25 25
LNE1MIN 52 82 LNE2MIN 599 515
LNE1MAX 122 163 LNE2MAX 501 438
LNE1RNG 94 144 LNE2RNG 766 650

LNE3VAR 40 96 LNE4VAR 837 713
LNE3SDV 44 96 LNE4SDV 1245 977
LNE3MIN 58 68 LNE4MIN 543 434
LNE3MAX 49 51 LNE4MAX 506 418
LNE3RNG 66 74 LNE4RNG 773 628

ALNIAVE 285 432 ALN2AVE 1009 730
ALNIVAR 132 222 ALN2VAR 502 475
ALN1SKW 265 328 ALN2SKW 20 17
ALNIKRT 201 219 ALN2KRT 10 7
ALN1SDV 147 240 ALN2SDV 980 810,
ALNIACV 573 631 ALN2ACV 82 91
ALNASK 285 328 ALN2ASK 20 17
ALNIMAX 77 117 ALN2MAX 616 530
ALN1RNG 76 116 ALN2RNG 615 529
ALNIMID. 77 117 ALN2MID 617 530
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TABLE 6-13. AD HOC EDGE F-RATIOS

Feature Global Adaptive Feature Global Adaptive

EDGIVAR 258 587 EDG2VAR 797 909
EDG1SKW 221 229 EDG2SKW 62 62
EDGIKRT 383 249 EDG2KRT 16 24
EDG1SDV 274 618 EDG2SDV 1490 1486
EDGIASK 198 208 EDG2ASK 23 23
EDGIMIN l00 125 EDG2MIN 944 956
EDGIMAX 153 248 EDG2MAX 765 722
EDGIRNG 136 249 EDG2RNG 1388 1407

EDG3VAR 243 545 EDG4VAR 810 917
EDG3SKW 237 247 EDG4SKW 61 61
EDG3KRT 202 276 EDG4KRT 31 46
EDG3SDV 256 573 EDG4SDV 3510 1492
EDG3ASK 217 230 EDG4ASK 26 26
EDG3MIN 91 108 EDG4MIN 945 967
EDG3MAX 147 242 EDG4MAX 776 730
EDG3RNG 123 222 EDG4RNG 1396 1415

AEDlAVE 289 586 AED2AVE 1343 J245
AEDIVAR 200 534 AED2VAR 788 1058
AEDISKW 168 226 AED2SKW 21 29
AEDISDV 202 527 AED2SDV 1430 1664
AEDIASK 167 226 AED2ASK 23 29
AEDIMAX 92 159 AED2MAX 1206 1252
AEDIRNG 91 158 AED2RNG 1202 1250
AEDIMID 92 160 AED2MID 1209 1254

AED3AVE 276 551 AED4AVE 1356 122
AED3VAR ]80 480 AED4VAR 804 1101
AED3SKW 182 246 AED4SKW 36 50
AED3SDV 180 475 AED4SDV 1452 1714
AED3ASK 182 247 AED4ASK 36 50
AED3MAX 82 140 AED4MAX 1205 1254
AED3RNG 81 138 AED4RNG 1202 1252
AED3MID 83 141 AED4MID 1208 1255

IEDIVAR 63 214 IED2VAR 53 156 V
IEDISDV 64 218 IED2SDV 55 159
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features should be noted. The two micro-operators are

similar, being essentially rotated versions of each other.

For some reason the diagonal line detector is much more

powerful. This could be due to anisotropy of the data

set, but results to be presented in the next- chapter show

much stronger discrimination for vertical and horizontal

features than for any diagonal feature. The only other

explanation which presents itself is the separable nature

of the LNE4 mask. All of *the masks which work well can

easily be expressed as the product (or convolution) of a

vertical vector and a horizontal vector. None of the

masks which work poorly have this property.

Separability into vertical and horizontal features

might well be of importance in biological vision systems.

Octopi and rats have great difficulty discriminatinq

diagonals in different directions. Rabbits, cats, and

humans are known to discriminate stimuli near the vertical

and horizontal more accurately than those which are nearly

diagonal. The apparent diagonal structure of the LNE4

mask could thus be less important than its horizontal and

vertical decomposition. It is difficult to see, however,

how this separable structure could be important in a

mathematical discriminant analysis.

6.9 Summary

This chapter presented many sets of texture measures,

all fittinq the spatial-statistical paradigm. Local

statistical moments were found useful only when combined

with spatial moments such as the Laplacian. Spatial

moments alone are also Ikcking, althouqh more powerful
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than co-occurrence texture measures. Rotation-invariant

moments are somewhat weaker, but possibly useful. Full-

invariants and joint spatial moments are nearly invariant

to texture differences. Some of the ad hoc 3x3 operators

work well, others do not.

A few other lessons have been learned:

- Texture can be measured with very local
operators.

- The 5x5 spatial moments are jointly less
powerful than the 3x3 moments, and contain no

* additional texture information; this may be an
inherent fault of perimeter-weighted masks.

- Convolution masks which are zero-sum and
separable seem to work best.

- Statistics of rotation-invariant measures work
less well than linear combinations of
directional statistics.

- The only macro-statistic needed is the standard
deviation.

We shall use these lessons in the next chapter to develop

even better texture analysis methods.
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CHAPTER 7

TEXTURE ENERGY MEASURES

This chapter develops our final spatial-statistical

texture model, one incorporating the best of our previous

models. We shall measure texture in much the same way as

in the previous chapter, convolving small center-weighted

filter masks across the image and then computing

statistics within a window around each pixel. The

responses to several such transforms will then be combined

in discriminant and classification functions for a set of

known textures.

7.1 Center-Weighted Filter Masks

Figure 7-1 shows three sets of one-dimensional

convolution masks. We suggest that these be called the

Lattice Aperture Waveform Sets of orders three, five, and

seven. The names of the vectors are mnemonics for Level,

Edge, Spot, Wave, Ripple, Undulation, and Oscillation.

Vectors in each set are ordered by secuency . The vectors

are wEighted toward the center, all are symmetric or

antisymmetric, and all but the Level vectors are zero-sum.

The vectors in each set are independent, but not

orthogonal.

4Number of 7cro crossings: zero for L7, six for 07.

* iii
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L3 [i1 2 1

E3 = [-1 0 1

S3 [ 2 ]

L5 = i 4 6 4 i]

E5= [=-1 -2 0 2 1]

S5- [- 0 2 0 -1]

W5 = [1 2 0 -2 1]

R5= [1-4 6 -4 1

L7 = 1 6 15 20 15 6 1]

E7 = [- -4 -5 0 5 4 ]

S7 = [-i -2 1 4 1 -2 -]

W7 [- 1 0 3 0 -3 0 1]

R7 = [1 -2 -1 4 -1 -2 1

07 [- 6 -15 20 -15 6 -1]

Figure 7-1. Center-Weighted Vector Masks
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4. . .....

The Ix3 vectors form a basis for the larger vector

sets 5. Each 1x5 vector may be qenerated by convolving two

Ix3 vectors. S5, for instance, can be generated as

(L3)*(S3), (S3)*(L3), or (E3)*(E3). The 1x7 vectors can

be generated by convolving lx3 and 1x5 vectors, or by

twice convolving Ix3 vectors. The secuency of a qenerated

vector is the sum of the component seauencies.

Figure 7-2 shows the nine masks generated by

convolving a vertical 3-vector with a horizontal 3-vector.

This may be considered a cross-product or vector

multiplication operation, but convolution has special

significance here. We shall extract texture information

from image data by convolving with the 3x3 masks, just as

we did with spatial moment and ad hoc masks. Convolution

with the component one-dimensional masks gives exactly the

same result as convolution with a separable 3x3 mask.

The nine independent 3x3 masks form a complete set.

Any 3x3 matrix can be expressed as a unique linear

combination of the masks. This was also true of the

perimeter-weighted spatial moment masks, but the center-

weighted set contains the edge, line, and spot masks which

were shown in Section 6.8 to be more powerful. Eight of

the center-weighted masks are zero-sum, a property shown

in Section 6.4 to be important.

The 5x5 masks and 7x7 masks (not shown) are similar,

5The 1x3 vector elements can be derived from
coefficients of the polynomials (a+b) (a+b) , (a+b) (a-b),
and (a-b)(a-b). Indeed, any of the vector sets may be
generated from coefficients of the binomial expansion.
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1 2 1 -] 0 1 -i 2 -1

2 4 22 0 2 -2 4 -2

?1 2 0 1 2 -I

L3L3 L3E3 L3S3

-1 -2 -1 1 0 -1 1 -2 1

E3L3 E3E3 E3S3

S3L3 S3E3 S3S3

Figure 7-2. 3x3 Center-Weighted Masks

with even stronger weighting toward the center. The

separable structure of these masks makes it feasible to

apply them as spatial-domain filters. A 5x5 convolution,

for instance, can be implemented as two 3x3 convolutions,

a 5xl and a 1x5 convolution, or two 3xl and two 1x3

convolutions.

We have also investigated the discriminating power of

one-dimensional masks. Previous experiments have shown
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that rotation-invariant filters, such as the Sobel

gradient magnitude, are only fair as texture measures.

Better results are obtained by using directional masks

separately and then combining the texture measures. We

have applied horizontal and vertical masks in pairs,

although the discriminant analyses have not been

constrained to assign equal weights. Sets of 3x5, 3x7,

and similar rectangular masks have not been tried.

7.2 Macro-Statistic Selection

It is time to re-examine our set of macro-window

texture statistics. In the last chapter we used twelve

measures. Experience has shown that either the variance

or standard deviation alone is sufficient to extract

texture information from the filtered images.

Variance is an average squared deviation from the

mean. For a zero mean field, as produced by convolution

with a zero-sum mask, variance is the average of squared

signal values. Tt is thus an energy measure, in the

formal sense of the word. Tt measures the total enerqy

within e window. If the image hes been filtered, it

measures local energy within the pass band. The SDV

macro-statistic is the scuare root of this local energy.

It may be considered a "texture energy" measure.

These statistics are more local then previously

studied frequency-domain texture measures. Freouency

components are measured with very small convolution masis.

Each micro-window is treated independently, without reqard

to its phase relationships with other micro-windows. This
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is appropriate for textures with short coherence length or

correlation distance. It is less powerful than Fourier

methods for man-made textures with inherent

synchronization of texture element spacings.

Energy and variance are both defined as sums of

squares because such sums are analytically tractable. The

physical world is under no constraint to be tractable. It

is probable that the human visual system avoids root-mean-

square computations, and quite possible that simpler

statistics are more appropriate for texture analysis.

Tables 7-1 and 7-2 present three alternatives to the

standard deviation. The first, ABSAVE, is computed as the

average absolute value within a macro-window. For a zero

wean field, it may be considered a fast approximation to

the standard deviation. The table of F-ratios shows that

it performs poorly only with L3L3, the 3x3 operator which

is no, zero-sum. The table of classification accuracies,

wl -1..h was computed for the adaptively equalized texture

set using fifty 3-vector, 5-vector, 3x3, and 5x5 feature

sets, shows that ABSAVE features are jointly more powerful

than SDV features, and nearly as powerful as both sets

together.

7he SDV and ABSAVE macro-statistics share a common

weakness. Neither can distinguish between a dark field

with bright spots and a bright field with dark spots. In

statistical terms, the two fields differ in skewness. Tn

frequency terms, they differ in phase rather than in

energy. A method of measuring local phase relationships
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TABLE 7-1. MACRO-STATISTIC F-PATTOS

Micro-
Feature SDV ABSAVE POSAVE NEGAVE

L3L3 63 2 2 2
L3E3 573 551 293 291
L3S3 345 415 378 392

E3L3 1492 1232 648 625
E3E3 977 933 887 880
E3S3 655 677 671 677

S3L3 811 727 666 672
S3E3 734 690 688 685
$3S3 700 690 688 691

TABLE 7-2. MACRO-STATISTIC CLASSTFICATION ACCURACTFS

Feature Set Global Adaptive

SDV 85.99 85.60
ABSAVE 88.09 87.11
SDV+ABSAVE 89.16 87.55

POSAVE 85.79 87.06
NEGAVE 87.01 85.94
POSAVE+NEGAVE 85.79 87.21

is needed. One solution is to teke averages of positivP

values instead of absolute values. We will call this the

POSAVE statistic. It is reasonable that neurons in the

visual cortex might perform such e cl ipping function.

There might also be a balancing set of neurons respondinq

only to luminances below average. We will compute NEGAVE

as the negative average of macro-window values below zero.
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Tables 7-1 and 7-2 show that the two one-sided

measures perform slightly less well than the SDV and

ABSAVE measures, although much better than thp co-

occurrence statistics of Section 4.2. For the present

dataset there is no compelling reason to use these less

powerful statistics. We shall restrict our attention to

the ABSAVE statistic, keeping in :ind that there will be

some textures not discriminable by these measures. ABSAVE

features are preferred to SDV features only because of

.6
their computational simplicity 6

. Both appear to be

equivalent measures of texture energy for this dataset.

7.3 Micro-Feature Selection

It is desirable to reduce the feature set as much as

possible. We shall begin by studying the one-dimensional

features.

Table 7-3 presents individual F-ratios for the

horizontal (H) and vertical (V) masks. The most striking

pattern is the exceptional strength of the vertical

measures contrasted with the moderate strength of

corresponding horizontal measures. This reflects the

presence of directional textures in the dataset. more

significant pattern is that Spot features are always the

most powerful, with power gradually decreasing as the mask

sequency increases. This despite the fact that Spot

filters of different lengths pass different spatial

freouency bands. Edge features are also strong texture

6An algorithm for computing ABSAVE statistics across a
feature plane is documented in Appendix P.
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diFscriminators. Level features are of no use because of

the histogram equalization.

TABLE 7-3. I-DIMFNSION41; APSVF F-RATTOS

Feature Global Adaptive Feature Global Adaptive

HL3 0 2 VL3 0 2
HE3 220 403 VE3 1335 1079
HS3 272 367 VS3 935 658

HL5 0 2 VL5 0 2
HE5 151 304 VE5 1210 1152
HS5 258 415 VS5 1385 1113
HW5 237 302 VW5 1032 737
HR5 282 337 VR5 742 543

HL7 0 2 VL7 0 3
HE7 94 178 VE7 1048 1076
HS7 240 412 VS7 1438 1292
HW7 245 356 VW7 1297 978
HR7 197 272 VR7 1044 760
HU7 205 271 VU7 847 608
H07 291 336 V07 695 527

Neurological studies [741 show 1hpt the visual cortex

computes edge measures in approximately ten-degree

increments. We have investigated diagona] one-dimensional

features, although they are not properly members of the

separable feature sets.

Tpble 7-4 lists F-ratios for one-dimensional. features

alona the forward diagonal (F) and backward diagonal (B)

The forward diagonal is from top left to bottom righ-.

These featurrs show far less power t-hpn corresponding
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TABLE 7-4. rIACONI'L FFA'T'FF Ec.AVF' F-RATTCF

Feature Global Adaptive Fcture Global F) ap I

FL3 0 2 BL3 0 2
FE3 64 95 BE3 49 62
FS3 68 70 BS3 1]0 ll

FL5 0 2 BL5 0 2
FE5 73 19 BE5 48 70
FS5 75 107 BS5 59 67
FW5 48 46 BW5 70 67
FR5 133 121 BR5 219 197

FL7 0 2 BL7 0 2
FE7 71 102 BE7 41 69
FS7 88 144 BS7 64 92
FW7 74 98 BW7 55 58
FR7 45 45 BR7 60 5F
FU7 71 65 BU7 121 i15
F07 164 144 B07 25d 22A

horizontal and vertical measures. This wps unnxpected,

even given that element specing is somewhat wider for

diagonal measures. The discriminating strenqt-hs 'io not

even follow the same sequency pattern. The remarkable

differences between rectilinear and Ai&qona respons,-

must be taken as - warning that discriminating power of

the separable masks may depend strongly on orientation of

the training textures. Indeed, all results in thiq

dissertation are derived, from e particulr daesnt, -nI

should be extrapolated with care.

Figure 7-3 presents F-ratios for two-dimensional

features, rounded to the nearest hundred. The extreme

discriminating power of vertical Edqc and Ppot features is

apparent. The matrices would be symmetric if the textures
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L E S

L 0 6 4

E 12 9 7

S 7 7 7

L F S W R

L 0 5 6 4 4

F 13 9 7 6 5

s 12 11 10 8 6

w 8 6 8 7 7

R 5 5 6 6 7

L E S W R U C

L 0 3 7 5 4 ? 4

E 1 8 6 6 5 4 4

S 13 12 10 9 8 7 5

w 10 10 9 9 8 7 6

R 7 8 8 8 7 7 6

U 6 6 6 6 6 6 6

0 5 5 5 6 6 6

Figure 7-3. Souare Mask F-PA-ios, in Hundreds
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were non-cirectional or rrndomly directional. Fvi ently

the F-ratios would then be l]rqest Plonq the diagonal

especially in the middle seauencies. The other important

fact is the great discriminating power of even the weakest

of these texture measures (excluding Level features).

Very few of the co-occurrencc F-ratios were as high as

300.

Joint classification accuracies for various feature

subsets are given in Table 7-5. The first and second

columns represent classification over globelly equalized

and adaptively eoualized images, as in the previous

chapter. The third and fourth columns are similar, but

with discriminant and classification functions computed

directly on the entire feature set instead of a selected

subset. Stepwise analysis with the F-ratio threshold of

40.0 typically selects nine to twe ie features. A lower

threshold would increase the number of features, and

slightly increase classification accuracy. Direct

analysis usually achieves the highest possible

classification accuracy, but at the cost of evaluatinq as

many as 100 features for eFch pixel to be classified.

The first five rows of Table 7-5 are based or

hori~ontl and verticel one-dimensional convolution masks.

The six 3-vectors alone perform sliqhtly better than t-he

elaborate co-occurrence features of Chapter 4. This is

amazing considering the simplicity of the texture energy

method and the many experimental vindications of

Haralick's co-occurrence statistics. The 5-vector

statistics perform even better. Using 7-vectors or
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TABLE 7-5. ABSAVE CLASSIFICATTON ACCURACEFS

Direct Direct

Feature Set Global Adaptive Global Adaptive

H3+V3 76.51 74.76 76.90 75.34
H5+V5 82.42 81.45 83.11 81.69
H7+V7 82.57 81.54 83.98 82.28
H3+V3+H5+V5 82.08 81.59 85.45 84.?8
H3+V3+H5+V5

+H7+V7 82.7] 81.98 87.21 85.99

H3+V3+F3+B3 82.37 80.76 82.67 80.73
H5+V5+F5+B5 86.23 85.11 87.65 86.23
H7+V7+F7+B7 84.28 85.16 88.77 87.65
H3+V3+F3+B3

+H5+V5+F5+B5 86.62 86.43 90.48 87.94
H3+V3+F3+B3

+H5+V5+F5+B5
+H7+V7+F7+B7 85.64 86.52 84.32 90.0Q

3x3 84.67 62.67 84.33 83.15
5x5 86.77 86.18 88.96 87.84
7x7 87.65 86.67 89.65 88.4?
3x3+5x5 88.43 87.40 90.53 89.50
3x3+5x5+7x7 88.33 86.62 92.77 92.51

H3+V3+3x3 84.91 83.06 86.67 85.29
H5+V5+5x5 86.62 85.89 90.09 88.92
H7+V7+7x7 87.70 86.91 90.87 90.?"
H3+V3+3x3

+H5+V5+5x5 88.09 87.1] 92.68 91.55
H5+V5+5x5

+H7+V7+7x7 F8.04 86.57 93.80 93.21
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combining more than one vector size qives no significn-

improvement.

The next five rows incorporate forward and backward

diagonal statistics. Classificption accuracies improve

significantly. The 5-vector statistics alone Pre

sufficient to achieve 86% classification accuracy, close

to the maximum reached in this study. The combined

feature sets have little more power, but provide insight

into the selection process. Discriminont functions are

* based on vectors of all directions and sizes. Different

subsets ere selected in the qlobolly eouPIized end

zadptively equalizcd cases, yet all selected features arc

either Edge statistics or the symmetric Fpot, Pipplr, Fnd

Cscillation statistics. None of the -ntisymmetric Wavr- or

Undulztion fosturcs were found useful.

The third section of Table 7-5 shows thb two-

dimcnsionel msks to be just as powerful . Length five

masks are again best, althouqh the evidence is less

conclusive. The adaptively equalized 3x3+5x5 feature

subset differs from the 5x5 feature subset only by

inclusion of L3S3, the ninth and lost feature to be added.

The fifth analysis favors 5x5 and 7x7 features about

equally. Selected statistics again differ from one

analysis to another, but Wave features are rarc end

Undulation features are absent. The consistent inclusion

of R5R5 is somewhat surprising since matching image

structures must be ouite rare. This mask resembles a two-
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dimensional sinc 7 or Bessel function. The similar S5S5

feature is individually very strong, but has little power

when combined with other features.

The final section combines one-dimensional and two-

dimensional features. Tt can be seen that classification

accuracies improve very little. Two-dimensional features

enter the models first, followed by a few of the lonqer

vector features. Again, there are few Wave and no

Undulaticn features, despite their high indivi'uelI

F-ratios. Otherwise the selection seems somewhat
arbitrary. Scatter diagrams show that the discriminant

dimensions are the same ones found with co-occurrence

features and with every other texture set we have trivd.

The chief difference is that there is slightly less

discriminating power in the first two principal components

and correspondingly more in the third component.

7.4 Summary

We have seen that one-dimensional and two-dimensional

convolution masks generate powerful texture measures.

Principal components analysis shows that I] of the

feature subsets are measuring the same texture dimensions.

Several simple statistics are equally good at extractinq

the texture information. Further development of these

methods would recuire a more extensive dateset.

7Sin(x)/x, an important function in image processing.
it is the spatial-domain representation of a scuere low-
pass filter. Tt Ppproximates the circul]rly symmetric
Airy pzttern or Bessel function important in Fouricr
optics.

125



Perceptual studies and comparisons with known features of

biological vision systems miqht also lead to npw

understand ing.

In the next chapter, we will develop one sot of

texture energy measures into a working texturr- analysis

system. Fouivalent performance could probably be achievci-

with any of the feature sets presented in this chapter.

1

6
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CHAPTER 8

SEGMENTATION AND CLASSIFICATION

This chapter develops a particular texture energy

model into a useful texture analysis system. Coefficients

are given for four principal component texture planes:

these can be used as texture measures for any dataset.

Classification coefficients for the eight traininq

textures are also given. Segmentation examples show that

the classifier can be used for blind segmentation of

natural textures, although better coefficients for

particular applications could be derived from appropriate

training data or from the principal component planes.

8.1 Texture Energy Measures

Figure 1-3 shows the seauence of imaqes used in

measuring texture. The original image is first filtered

with a set of small convolution masks. The filtered

images are then processed with a nonlinear "local texure

energy" filter. This is the ABSAVE movinq-window average

of abEolute image values. Such moving-window operations

are very fast even on general-purpose digital computers.

The next step in Figure 1-3 shows the l inear

combination of texture energy pl.nes into a smaller numbpr

of principal component planes, typicplly four. This is an

optional dzta compression step. The component images seem
b..

to rEpresent natural texture dimpnsions, Pnd to be morp
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"reliable" than the texture rnerqy planps.

The final output is a segmenteO imaqe or

classification map. Classification is simple and fast if

the texture classes are known a priori. Fither texture

energy planes or principal component planes may be used as

input to the pixel classifier. Clustering or segmentation

algorithms must be used if texture classes are unknown.

We saw in the last chapter that almost any set of

texture energy transforms could be used to discriminate

the eight textures of our dataset. 5x5 convolution masks

are more powerful than 3x3 masks, and simpler then 7x7

masks. Separable square masks are easier to implement on

a digital computer than rectilinear and diaqonal masks.

We shall therefore proceed with the 5x5 measures.

TABLE 8-1. TEXTUPE ENEPCY CLASSIFICATTCN ACCURACY

Macro-indow Size

Feature 3x3 7x7 15x15 flx3]

LESWR 43.55 67.24 86.77 97.95
LESR 41.65 66.80 86.77 c7.71
LSR - - 86.57 95.85
LER - - 86.57 -

ILESWR 35.99 58.06 85.11 97.17
ILESR 34.28 58.06 85.11 96.q6
ILSR - - 83.89 94.97
ILER - - -84.3
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Table B-1 shows the classification accuracies

achieved with different 5x5 micro-features and

macro-window sizes. The letters in the feature set names

stand for the vector masks of the last chapter. LESWR,

for instance, is the set containing a]l two-dimensional

masks made of Level, Edge, Spot, Wave, and Ripple

convolutions. The letter I stands for contrast

invariance. Features were made invariant by dividing

pixel values in the texture energy plane by correspondinq

values in the L5L5SDV plane. L5L5 features are otherwise

excluded from 2ll feature sets in the table. Other

feature planes were computed with the ABSAVE

macro-statistic. Tabulated values are based on 302r

samples per texture, except that ?lx'l features are based

on 1056 samples per texture. The table shows that-

classification accuracy drops rapidly as the macro-window

size is reduced below 15x15. Nearly perfect

classification of 31x31 blocks is possible, but we will

see later that segmentation quElity is poor at this

resolution.

Contrast invariance has E very small effect on

classification accuracy, but permits - biq s--vinas in

computational cost. This is because histoqrpm

equalization is unnecessary. We shall use contrast-

invariant features throuqhout 'he rest of this chapter.

All of the 15xl5 featur- sets perform we]l, even t-he

eight-member ILSR and ILER sets. The antisymmetric Wave

features are of little use. We shall confinn our

attention to the vector ,rasks
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L5 = [ 1 4 6 4 1]

E5 = [-l -2 0 2 I]

S5 = [-1 0 2 0 -1]

R5 = [ 1 -4 6 -4 I]

Sixteen two-dimensional masks can be formed from

these vectors. The number of masks could be reduced to

nine or even six with little penalty, but we shall present

coefficients and classification results for the full set

of 15 zero-sum masks. The four most important masks for

our experimental dataset are shown in Figure 8-1.

TABLE 8-2. STANDARDTZFD COEFFTCTENTS

Feature Cmp I Cmp 2 Cmp I Cmp

IL5E5 -0.277 0.238 0.092 0.339
IL5S5 -0.105 -0.055 -0.065 -1.215
IL5R5 -0. 269 0.284 0.179 1.210
IE5L5 0. 204 0.331 -0.570 -0.41?
IE5E5 0.01] -0.248 0.318 -1.264
IE5S5 0.188 -0.084 0.166 -0.122
IE5R5 0.123 -0.147 0.243 0.043
IS5L5 0. 177 0. 359 0.482 0.508
IS5E5 0.215 -0.185 0.161 3.011
IS5S5 0.026 -0.087. 0.622 0.437
IS5R5 0.053 -0.313 -0.054 0.011
IR5L5 0.006 0.291 -0.371 -0.160
IR5E5 6.081 0.190 -0.265 -0.020
IR5S5 -0.168 -0.270 -0.315 -0.127
IR5R5 -0.171 -0.439 -0.693 -0.252

Relative strengths of the features may be estimated

from Table 8-2. The principal component coefficients are
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Figure 8-1. 5x5 Center-Weighted M sks
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given for features rcducccl to zero mean End unit standard

deviation. I able 8-3 qives the same coefficients for

unstandardized features. These are more useful for

actually computinq the princ ip1; component images.

Different sets of coefficients must he usei for different

sets of features or for different window Si~eS.

TABLE 8-3. UNSTANDARPIED COFFFICTFNTC

Feature Cmp 1 Cmp 2 CMp 3 Cmp 4

IL5E5 -4.266 3.658 1.416 5.214
IL5S5 -2.127 -i.110 -l.?27 -24.721
IL5R5 -3.070 3.239 2.046 "13.798
IE5L5 3.578 5.801 -9.986 -7.241
IE5E5 0.743 -17.515 22.427 -89.249
IE5S5 21. 520 -9.650 18.975 -13.926
IE5R5 6.156 -7.398 12.193 2.168
IS5L5 5.466 11.079 14.891 15.721
IS5E5 25.569 -22.0]r 19.]50 119.984
IS5S5 4.813 -16.232 117.367 82.408
IS5R5 3.936 -23.471 -4. 057 0.814
IR5L5 0. 128 6.609 -8.427
IR5E5 5.995 14.112 -19.662 -1 .464
IR5S5 -17.690 -28.349 -33.)55 -131.345
IR5R5 -5.469 -14.050 -22.192 -8.069
Constant -0.265 -0.148 -0.069 0.815

8.2 Pictorial Examples

Figure 8-2 shows two images which wil l be used to

illustrate the texture energy transform. The first is a

composite of the Prodatz textures. The first- two rows of

]26x]28 blocks were taken from thr' centers of thc Cress,

Raffia, Sand, Wool , Piqskin, Leather, Weter, ,anri Woorl
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images. Histogram equalization was applied to each block

separately. The bottom-left quadrant is composed of 32x32

blocks of histogram-equalized images; the bottom-right

quadrant of 16x16 blocks. The resolution is such that

even trained observers would have difficulty identifyina

the ]6x16 blocks.

The second image is a street scene that has been used

by other segmentation researchers. It is available in

color, but this study is confined to monochrome

segmentation. The luminance image has been subjected to

* histogram equalization for display. Ail texturc

transforms were computed on the unequalized version.

Figure 8-3 shows the result of convolvinq the

original images with the L5L5 mask. The AVE planes arp

just blurred versions of the originals. These imaqes aive

some ides of the resolution actually available to a

texture segmenter, since texture must be measured over a

region around each pixel.

The SDV planes are more useful as texture feature

planes. They measure local contrast. By itself this is

not a good segmentation feature: it tends to locate edges

rather than regions. Note how little difference there is

in the SDV values of the different Brodatz textures. The

importance of these feature planes is that they can be

used to remove contrast and edge effects from other

feature planes. We simply take the ratio of eakh featurp

value to the correspondinq SDV value. This removes

effects of variable scene illumination as well as reducing
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(a) Composite L5L5AVE (b) Composite L5L5SDV

(c) House L5L5AVE (d) House L5L5SDV

Figure 8-3. Averages and Standard Deviations
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the effect of edges. Even stronger normalization could be

devised using the AVE image as well.

Figures 8-4 and 8-5 show the results of filterinq

each image with the four most important center-weighted

masks. E5L5 is a horizontal edge mask. Tt enhances the

horizontal structure in Raffia, while hardly responding to

the vertical edges in Wood. R5R5 is a high-frequency spot

detector: it produces a grainy feature plane which is very

difficult to reproduce. E5S5 is a peculiar V-shaped mask

which responds best to textures with low correlation. Tn

the House image it seems to enhance diagonal edges. L5S5

is a vertical line detector. It enhances vertical edges,

particularly repetitive ones such as in Water and Wood.

Figures 8-6 and 8-7 show the effect of the ABSAVE

texture energy transform prior to normalization with the

SDV plane. The separation of textures in the Composite

image is obvious. Careful examination of the House images

shows that different parts of the scene also have

different relative brightnesses in the different texture

energy planes. It should be remembered that only four of

15 texture planes are illustrated.

Figures 8-8 and 8-9 are particular linear

combinations of the ]5 texture enerqy planes (after

normalization). The linear combinations are principal

component transformations for the eight Brodatz textures.

The Composite images look very similar to texture energy

planes, but the bright and dark areas are more uniform.

The House images do not strongly resemble the texture

V. .~ 136



ai , -. . •.. . .". . . . , , ... , . .. _

the effect of edges. Even stronger normalization coulH be

devised using the AVE image as well.

Figures 8-4 and 8-5 show the results of filterinq

each image with the four most important center-weighted

masks. E5L5 is a horizontal edge mask. It enhances the

horizontal structure in Raffia, while hardly responding to

the vertical edges in Wood. R5R5 is a high-frequency spot

detector: it produces a grainy feature plane which is very

* difficult to reproduce. E5S5 is a peculiar V-shaped mask

which responds best to textures with low correlation. Tn

the House image it seems to enhance diagonal edges. L5S5

is a vertical line detector. It enhances vertical edges,

particularly repetitive ones such as in Water and Wood.

Figures 8-6 and 8-7 show the effect of the ABSAVE

texture energy transform prior to normalization with the

SDV plane. The separation of textures in the Composite

image is obvious. Careful examination of the House images

shows that different parts of the scene also have

different relative brightnesses in the different texture

energy planes. It should be remembered that only four of

15 texture planes are illustrated.

Figures 8-8 and 8-9 are particular linear

combinations of the 15 texture energy planes (after

normalization). The linear combinations are principal

component transformations for the eight Brodatz textures.

The Composite images look very similar to texture energy

planes, but the bright and dark areas are more uniform.

The House images do not strongly resemble the texture
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(a) E5L5 (b) R5R5

(c) E5S5 (d) L5S5

Figure 8-6. Texture Energy Planes, Composite
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(a) E5L5 (b) RP5

IwI"

(c) F5S5 (d) L555

Figure 8-7. Texture Energy Planes, House
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Iwo
(a) First Component (b) Second Component

LI

(c) Third Component (d) Fourth Componpnt

F'igure 8-8. Principal Components, Composite
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(a) First Component (b) Second Component

(c) Third Component (d) Fourth Component

Figure 8-9. Principal Components, TFouse
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energy planes, perhaps because of contrast reversals. The

discriminant planes are not necessarily principal

component planes for the House textures, but their

discriminating power is obvious.

8.3 Segmentation and Classification

This section will illustrate the quality of image

segmentation which can be obtained with texture energy

measures. Two approaches will be shown, blind

segmentation and classification with a priori knowledge of

the texture class statistics. We will use a nearest-

centroid or maximum-likelihood linear classifier as

described in Appendix C.

Blind segmentation requires clustering of the image

data to determine the number and types of regions present.

There are many multivariate clustering algorithms, but few

designed to segment images. One of the best is the

"Ohlander segmenter" now maintained by Dr. Keith Price

[46]. We have used this computer program without

modification, despite the compromises required. The first

three principal component planes were used as red, green,

and blue color planes. The fourth principal component

plane was not used. The segmehter thus had no way to

distinguish between Water and Wood. Further, the

principal component planes are unimoda] and quite unlike

natural color planes for which the segmenter was designed.

Color transformations (Y-I-Q and Saturation-Hue-Intensity)

had to be used to aid the segmenter.

The first image in Figure 8-10 shows the result of
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(a) 15x15 Segmentation (b) 31x31 Classification

(c) 15x15 Classification (d) Partial Classification

Figure 8-10. Segmentation, Composite
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segmenting the Composite picture. The 128x128 blocks are

reasonably well separated into seven texture classes. The

32x32 and 16x16 blocks are not resolved.

The second image shows classification results usinq

31x31 macro-window statistics for the eiqht texture

classes. Large regions are almost perfectly classified,

but 32x32 regions are only partially separated. The 16x16

regions are not resolved.

The third image, classified with )5x15 features, is a

better segmentation of the scene. The Wool, Water, and

Wood textures are almost perfectly identified; other

textures have at least 78% accuracy across the oriqinal

512x512 images. Errors tend to occur in patches. Nei-her

the classification nor the principal component measures

tend to "go wild" near region boundaries. Table P-4 qves

the coefficients used to compute the discriminant

functions. Fach pixel is assigned to the class wit-h the

highest function value.

The fourth image is identical to the third, but with

doubtful classifications suppressed (shown as black).

Classification was skipped unless the hiqhest

classification function exceeded the second hiqhest by at

least 20%. It can be seen that some texture types are

less "certain" than others.

Figure 8-11 repeats the classification secuenre for

the Fouse image. Blind segmentation performed very badly

on this image. The results of texture classification are

surprisingly good considerinq that pixels are bpina
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TABLE 8-4. CLASSIFICATICN COEFFTCTENTS

Actual Grass Raffia Sand Wool Pigskn Lthr Water Wood

IE5L5 177 216 176 180 169 202 221 273
IL5S5 -153 -190 -162 -188 -156 -178 -57 -195
IL5R5 5 18 4 5 4 1 0 98
IE5L5 253 353 282 285 278 215 274 203
IE5E5 -411 -739 -368 -700 -403 -354 -270 -691
IE5S5 515 591 233 441 337 757 147 46
IE5R5 65 -22 12 12 -71 63 -95 -96
IS5L5 -207 -138 -227 -333 -316 -222 -391 -254
IS5E5 957 411. 846 871 940 547 65 658
I IS5S5 222 -895 -33'3 -655 -798 -519 -876 -256
IS5R5 -64 -105 -22 135 -136 103 -71 -1 r
MRSL5 -17 71 -13 2 78 -14 33 16
IR5E5 4 166 79 38 175 -88 22 -12
IR5S5 -240 -372 -15 140 34 -112 245 71
IR5R5 -125 -58 -19 151 -10 35 120 -8
Constant -32 -37 -29 -30 -27 -29 -34 -3

16
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classed as Raffia, Leather, etc. Major semantic reqions

are isolated in all three versions, except that the car

and lawn are not separated. Note that thp pipce of

cellophane tape in the lower-right rorner is

differentiated from its white backoround.

TABLE 8-5. CLASS CCNFUSTON, PERCENT

Predicted

Actual Grass Raffia Sand Wool Piaskn Lthr Water Wood

r Grass 77.8 0.7 9.9 0.4 0.9 l0.3 0.0 0.1
Raffia 0.5 91.8 3.1 0.0 4.5 0.1 0.0 0.0
Sand 4.4 0.6 80.8 0.4 9.7 4.1 0.0 0.0
Wool 0.2 0.0 6.2 86.9 4.1 2.6 0.0 0.0
Pigskin 0.4 2.0 15.2 1.1 81.2 0.2 0.0 0.0
Leather 2.3 0.0 4.0 0.9 0.1 92.5 0.3 0.0
Water 0.0 0.0 0.0 2.8 0.? 0. 1 91.2 '.6
wood 0.0 0.0 0.0 0.0 0.0 0.4 2.7 96.P

Tables 8-5 and 8-6 show the relative separation of

the eight texture classes in the principal component

space. Pigskin and Sand ere often confused, although it

is difficult to say why. Grass is often classified as

Sand or Leather: the errors are nearly all in the upper

third of the Grass image, which is in much sharper focus

then the rest.
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TABLE 8-6. PAIRWTSF F-RATTOS

Grass Raffia Sand Wool Pigskn tthr Water Wood

Grass - 2639 623 3187 1649 1013 4581 5087
Reffia 2639 - 1746 41eO3 1567 3780 4814 5378
Sand 623 1746 - 1437 495 1005 3635 4796
Wool 3187 4193 1437 - 1647 1572 3570 5034
Pigskin 1649 1.567 495 1647 - 1998 3500 4885
Leather 101 3 3780 1005 1572 1998 - 2562 3700
Water 4581 4814 -635 3570 3500 2562 - 1934
Wood 5087 517 - 4796 5034 4885 3700 1934 -

15 and 24,178 degrees of freedom

8.4 Timing Estimates

Table 8-7 shows the amount of computinq time reouirpd

for various operations. The total time reauired to

Focqment n im qr c.pends on the options chosen. TIt can

vary frorr (j to 51) minutes wit-h the present-

implernent tion.

Most of -he run. time is consumed by convolutions and

matrix cumulations. The convolutions are quite fast, but

could be speeded with special hardware or optimized code

for each mask. The number of filtered images, end. hnnce

the number of texture energy planes, could also be cut in

half with very little ill r.ffect.

Cumul;.tion of mat-rices takes only six seconds per

51 2x' 1 2 planr , but I-hc re arc a ]ardc number of sucb

op- r ior. T he oper.Iion ifsc!f could Le reduced to half

th t ir h y u .:i n opt inm! t-c hn'oues. Thr number of

urrl t I on -1 t ]o b,- rCIuc'ed by cOmpuLt- i nq
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TABLE 8-7. TIMING FCR ]5X15 CASSTFTCATTON

Tot:?]

Operation Seconds Minutes

Image Input 21 .35

L5L5 Convolution 57 .95
AVE, SDV Computation 41 .68
AVE, SDV Output 34 1.12

Convolutions (15) 57 14.18
Feature Plane Output (4) 34 2.23

Energy Measurement (15) 15 3.78
Energy Plane Output (4) 34 2.23

Component Initialization (4) 0 .03
Component Cumulation (15x4) 6 6.20
Component Output (4) 34 2.23

Class Initialization (8) 3 .35
Class Cumulation (]5x8) 6 12.38
Classification 45 .75
Classification Output 34 .57

48.0T5

classifications from the principal component planes

instead of the texture enerqy planes. This svinqs arows

linearly with the number of texture c1psses and with thn

number of feature planes.

Real-time implementation of texture description is

quite possible. Digital hardware for 3x3 convolution is

already available. The additional accuracy of 5x5

processing could be obtained with two 3x3 stages or with a

1x5 and a 5xl stage. Only the macro-Itwindow enerqy

transform remains to be developed. The chief problem is
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the number of image rows which must be held in memory.

This could be reduced to zero by using F "fading memory"

energy transform instead of an accurptely updated movinq

window trp.nsform.

1

r t
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CHAPTER 9

CONCLUSIONS

We have surveyed the literature of texture analysis,

developed an experimental method of comparing texture

measures, evaluated co-occurrence and correlation

statistics, tested hundreds of spatial-statistical

operators, documented a new texture energy approach, and

implemented a texture classification system. it is time

to review these accomplishments and to suggest further

research.

9.1 Summary

Attempts at quantitative texture measurement began at

least two decades ago. Most of the tools of engineers and

computer scientists have been tried, including

classification, correlation, linear prediction, Fourier

analysis, joint density estimation, cluster analysis, and
0l

syntactic analysis. Few methods have proven useable.

We have chosen to study, high-resolution natural

textures. These have been modified to have identical

histograms, making texture analysis the only way to tell

them apart. Any procedure which can accurately classify k

the image pixels must therefore be measuring texture.

Relative classification accuracy for a particular dataset

can be used as a quality measure.

The class of co-occurrence statistics was
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77i

investigated. Several methods of information extraction

were tried, with little improvement over the Haralick

measures. Classification accuracy could not be ra sed

above 72% for our experimental dataset.

Augmented autocorrelation statistics were also

evaluated. Classification accuracy was limited to 65%,

and this was achievable without usinq autocorrelation

* measures. The Laplacian operator was found to extract

more texture information than the Sobel gradient magnitude

or Markov whitening operators.

The Laplacian method led to a more general class of

spatial-statistical transforms. Hundreds of operators

were tried, including statistical moments, spatial

moments, rotation-invariant and contrest-invariJnt

moments, joint spatial-statistical moments, combined 3x3

and 5x5 moments, and a larqe class of ad hoc convolution

operators. Classification accuracies above 88! were

achieved, but no one system was satisfactory.

Texture energy transforms were then developed. They

are a class of spatial-statistical transforms, and

incorporate all of the lessons learned in earlier work.

The essence of this approcch is local measurement of the

energy passed by set of symmetric ,nd antisymetric

filters. Classific4tion eccuracies as hiqh as 94% were

achieved, despite the simplicity of the alqorithm.

A particular set of 5x5 masks was chosen for the

final analysis system. The outputs of 15 filters,

normali7ed by local contrast, were used to build princippl
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component planes and classification maps. Average

classification accuracy within large areas was 87%, with

sufficient resolution to identify elements in a mosaic of

16x16 texture blocks. The ability to trade resolution for

higher accuracy was also demonstrated.

9.2 Iterative Improvement

Texture segmentation, as discussed so far, is a

preprocessing technique for locatinq uniformlv textured

regions. The next step is to Fpply more specific

knowledge sources to improve the segmentation or

classification.

Initial segmentation of a texture image may be done

with known prototypes (such Fs wheat, corn, forest, etc.1

or with cluster centers Pxtracted from the image data. In

either case it is desirable to re-exemine regions to

compute more accurate texture statistics than were used in

the initial segmentation.

The improved statistics may be used for reclassifying

pixels along the region borders. This amounts to

hypothesis testing, since the pixel is to be assigned to

one texture field or the other, or to a third region such

as 2 river or road separating the first two. The linear

prediction technique of Deguchi and Morishita f181 could

be adapted to this purpose, as could the relaxation

methods of other researchers 1831, 1841.
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9.3 Modeling of Natural Textures

A major application of texture perception is fhb

interpretation of aerial photogrephs. Tf textured are-

are to be identified, we must start with e training s-t of

known textures. The parameters of these tr-xtur(P -r. hr

used as prototypes or design constraints in h

development of classifiers.

Tmage textures are dependent on the imqinq system

with which they were created. Fumans --ro Ph!r to

compensate for chanqinq imaging conditicns, but -rtifici.71

vision systems have not yet masterecd this trick. Tt is

therefore necessary to study the effoct on texturc

features of changes in scale, i1lumin. ion, rotation,

geometric warp, atmospheric blur, optical aberrat-ions,

film or detector noise, and method of ounrtization.

Texture energy features are particularly well sui cc1 for

this type of modeling.

9.4 Perceptual Modeling

Texture description must ultimately bp done in humnn

terms. Tt would be useful to know how texture Pnrrqy

measures correlate with human texture perception. Texturr'

energy processing seems similar to known functions of thr

visual cortex, but such cleims need to hr suhFn-it'd.

One arep needing rcse rch is tbr prnrpspina of

texture in color imagrry. Tt is onibIu ful th'- nir

vision systems determinr txtur- r--r' 1 y in r-(- c!er

plane, but such reho , '- h'v' kmr hqqc-n for *ji, 1

systems. Pcrh F* such mthcs 7- 0 -1'mr.
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information from multispectral imagery than is now

possible. For perceptual modeling, it is more likely that

texture is computed only in an adaptively, processed

luminance plane.

9.5 Texture Synthesis

Image synthesis is the opposite of imaq

understanding, just as reconstruction is t-hp opposite of

compression. Both ore attempts to display data in e form

which humans can readily understand.

Texture synthesis is most useful for beckqround

regions. These can be transmitted or stored Fs sets of

shape and texture parameters, then synthesized for visual

display. For ]crq background regions this permits

tremendous date compression.

Some texture measures are well suited to synthesis.

Haralick's co-occurrence statisticF can be directly

implemented as pixe3-generating probabilities, and Pratt's

method [8] can be used to generate texture fields from

correlation statistics. The whitening method of Faugeras

and Pratt [631 can also be reversed to generate textures.

It has not yet been determined whether texture energy

measures can be used for synthesis.

9.6 Conclusions

In retrospect, texture analysis does not seem such a

difficult problem. A fast and elegant solution has been

found. We have shown that texture eneroy measures

effectively discriminate texture fields, and that they can

be used for segmentation of natural images.
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IN

Texture energy measures have much in common with -he

Fourier statistics of Lendaris and Stanley, and with the

spot density, edge density, and variance statistics of

analysis method will be found, but the concept of local

pattern enerqy is firmly established.

1

4!

0J
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APPENDIX A

HISTOGRAM EQUALIZATION

Each image used as input to the analysis routines was

first equalized to compensate for differences in

illumination and processing. Each image or feature plane

*. printed in this document was equalized to make maximum use

of the limited dynamic range of the printing process.

The following program is the core of the histoqram

equalization procedure used in this study. Tt is part of

the VCTLIB segment of the SA1TL.IS library of image

processing routines written and maintained by the author.

The subroutine is written in SAIL.
INTERNAL PROCEDURE EQLCUT

(INTEGER ARRAY TMG!HST.
REFERENCE TNTEGER ARRAY CUT!PNT);

COMMENTPurpose:

Segments a histogram vector into ecual portions.
Author:

Kenneth I. Laws.
Last Revision:

March 5, ]979.
Input:

IMG!HST is the original histogram. It should have
increasing indexing end non-neqative elements.

Output:
CUT!PNT should be indexed from 1 through the number of
probability bins desired. Each clement of CUT!PNT
will be set to the highest index of the oriqinal
histoqrlm which should be assignee] to that bin. The
last cutpoint will always be the hiqhost indnx of
TMG!HST.
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Remarks :
The cutpoints are similar to percentiles or quantiles.
Each cutpoint is chosen to minimize the error in the
cumulative probability up to and including that bin.
Slightly different results might be obtained by
starting at the other end, and there ere a few
histograms for which this algorithm will not yield
good results. For an optimal equalization algorithm
see S.-K. Chang and Y.-W. Wong, Communications of the
ACM, Oct. 1978. The algorithm used here is similar to
the EPQ method of Richard Conners (which is similar to
that of Haralick) , except that cutpoints are matched
to percentage of total probability rather than
percentage of remaining probability.

END COMMENT;

BEGIN "EQLCUT"

INTEGER MIN!IMG!VAL,MAX!TMG!VAL,N!BINS;

r"Determine the old and new histogram limits."
MIN!IMG!VAL ARRINFO(TMG!HST,1);
MAX!IMG!VAL APRTNFO(TMG!HST,2);
N!BINS := ARRTNFO(CUT!PNT,2);

"Allocate a vector for the cumulative histogram."
BEGIN "ALLOCATE"

INTEGER NOW!VAL,TTL!CNT,LST!CUT,NOW!CUT;
INTEGER ARRAY HST!SUM[MIN!IMG!VAL:MAX!IMG!VAL] ;

"Form the cumulative histogram."
TTL!CNT := 0;
FOR NOW!VAL := MIN!IMG!VAL STEP I UNTTL MAX!IMG!VAL DO

HST!SUM[NOW!VALI
:= (TTL!CNT := TTL!CNT+IMG!HSTrNOW!VAL1);

"Determine the reouantization cutpoints."
LST!CUT := MIN!IMG!VAL;
FOR NOW!CUT := I STEP I UNTIL N!BINS DO BEGIN "CUTPNT"

INTEGER NOW!VAL,NOW!TTL;
REAL EQL!TTL,OLD!ERR;

"Compute the threshold for this bin."
EQL!TTL TTL!CNT*NOW!CUT/N!BINS:

* OLD!ERR TT[,!CNT+l;
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"Find the highest cutpoint for which
the error is minimum."

FOR NOW!VAL :=LST!CUT STEP 1 UNTIL MAX1T!MC!VAL DO
BEGIN "FNDCUIT"

REAL NOW! ERR;

NOW!'ITL HSqT!SUM[NOW!VAL];
NOW!ERR APS(EQL I L-NOW!'TTL);
IF CLD!ERR < NOW!ERR THEN DONE "FNDCUT";
OLD!ERR :=NOW!ERR;
CU;T!PNT[NOW!CUT] :=NOW!VAL;

END "FNDCUT";

LST!CUT :=CUT!PNTrNOWK!CUT1;
END "CUTPNT";

END "ALLOCATE";
4 END "EQLCUT";
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APPENDIX B

MACRO WINDOW STATISTICAL TRANSFORM

This section documents the algorithm used to compute

the ABSAVE macro feature plane from a micro feature plane.

The computation of the macro window statistic is done

block by block to save storage. This block size has no

relation to the window size. Within each block, the

transformation is done by a moving-window algorithm. The

code to compute statistical moments is similqr, but much

more complicated.
INTERNAL PROCFDURF ARqAVE

(SAFE REAL ARRAY IMC!MTX;
INTEGER MIN!PLK!ROW,MTN!PLK!CCL;
RFFERENCE SAFE REAL ARRAY AVEL!PTX;
INTEGER IDW!SZE);

COMMENT
Furposc:
Computes the mean absolute level around each pixel.

Author:
Kenneth 1. Laws.

Last Revision:
August 26, 1979.

Input:
IMC:MTX must bc a matrix with at least WDW!SZF%2 rows
and columns surrounding the desired sub-block. The
data block will be a, submatrix the same size as
AVF!MTX. The square window size must be an odd
inteqrr. Tt may be larger or smaller than tle block

* Thr non-spctial moments will be computed within
.I. .r) of this si7- around each pixel of the data
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Output:
The output matrix must not be the sam'- 1-s the' input
matrix. Each element of CUT!MTX will bo ossign-d th'c'
average of absolute values in the corresponclinq dptp'
window.

Remarks:
The algorithm is linear in the block Si7P (Sai1~re'i),
and constant in the window size!
Note that the arguments are real :-rrz-ys. This i5 rrorr-

general than usinq integer arithrncfic, hut slow-r nr
some machines.

END COMMENT;

BEGIN "IABSAVE"

*Require SUBLIB procedures;
EXTERNAL PROCEDURE ADD)FLT(RFAL. NEW!V'L.;

REFERENCE REAL FLT!VAL);

INTEGER MIN! OUT! POW, MAX! OUT! POW, 8 [-.K! POWVF , M TN! OUT!I cr.,
MAX! OUTICOL ,B-K ! COtS q, LF! WDW!U7 F , TN!TMC PW,
MA X !TMG! ROW,M TN! IC!COLMIAX! TMC ! CCL;

REAL SZE!FCTR;

"Check validity of the input arguments."
HLF!WDW!SZE := WPW!SZE%2;
IF NOT (3 <= WDW!SZE < 512) OF WDW!q7F = 2*HT.F!1VDW!S7F
THEN USFRFPP(O,I,

"ABSAVE: WDW!SZF must be a small odrl int-r-q-r.")-

"Determine the data and output block dimensiun!:."
MIN!OUT!ROW -= ARRTNFC(AVE!MTX,l);
MAX!OUT!ROW -ARRINF0(AVF!MTX,2);-
LBLK!ROWS := MAX!OUT!RCW.+i-MIN!CUT! RCW;
MIN!0-UT!COL :ARRINFC(AVE!MTX,3);
MAX!OUT!COL :=ARRINFC(AVEU.MTX,4);

BLK!CCLS := MAX!OUr!COL+l-MIN!CUT!C'L;

"S~et dimensions for the augmented imaqe block."
MIN!IMG!ROW :=MIN!PLK!RO1W-PLF!WDW!S7F;

MPX!TMC-!RCOW MIN!PLFKiOW+PLK!PCW !+PTLF!WDW!SZF-1;-
MIN!II'C-!CCL :=MI!PLK!COL-HLF!%LDWI!FF:
MAX!IMC-!COL : MIN! PL.I!CCL+PI,K!CCS+HLF!WrW! F7F-1 ,

"Precormputo the win~ow Si7C fa-ctor."
SZE!F'CTF := Il.O/VPW!SZF^2;

"Use block structurr~ to a.1 locat.- wcrkinn ,-t-t
BECIN "ALLOCATE"





"Center the block total on the new columyn."
MAX!WDW!COL := MAX!WD)W!COL+I;

EEND "NEROW";

P.0 "ABSAVE";
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APPENDIX C

DISCRIMINANT ANALYSIS

All discriminant analyses used in this study werp

done with the SPES statistical analysis system. This

package is available from SPSF, Inc., Suite ?300, 444

N. Michigan Ave., Chicago, IL 60611.

The mathematical basis of the FPSS algorithms r85] is

given below. The formulas have been simplified by the

assumptions that the texture classes are ecua]]y likely

and that the same number of samples have been taken from

each class, conditions that were satisfied throughout this

study.

C.1 Notation

fklm the value of feature 1 = ],...,L
for sample m = !,...,M
within texture class k =

N the total number of texture spmples.

Within-Group Sums of Cross-Products Matrix

K M K M M
W ij iEliif kim fkjm A E ~ (2:j fkim)( fkjrn

k=l m-I k=l m=l M-3

l6f;

, % . ,



Total Sums of Cross-Products Matrix

K M

=j E :kiut kjm
k=1 m=l

K M K M

k=l m=l k=l m=l

Tolerance

0 if W = 0

TCL1  w l/Wl variable 1 not in the model

-I/W 11 11 otherwise

F-to-remove

(Wlltl11)/(K-1)
F1 = *

t /(N+I-K-q)

F-to-enter

(tll-W11) / (K-1)

w1 1/(N-K-q)

Wilks' Lambda

LAMBDA = IW1I/ITill

with degrees of freedom q, K-1, and N-K.
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C.2 Variable Selection

SPSS permits either direct or stepwise entry of

variables into the model. This study used stepwise entry

with the threshold constants given below. At each step:

- Each variable in the model is considered for
removal. A variable is eligible for removal if
its F-to-remove is less than FOUT=40. If more
than one is eligible, that variable is removed
which leaves the lowest Wilks' lambda for the
remaining model. Variables are then
re-evaluated and removal continues until no more
variables are eligible.

- The best variable not in the model is then
selected. A variable is not considered if its
inclusion would cause the tolerance of any
included variable (or its own tolerance) to drop
below TOLERANCE=0.000]. Neither is it
considered if its F-to-enter is less than
FIN=40. The eligible variable with the highest
F-to-enter is then included in the model.

- Processing stops when no more variables are
eligible for inclusion.

During variable selection, the matrix W is replaced

at each step by matrix W . If the first c variables have

been included, we partition W to be

-21 Y22

where W is qxq. Then
-11

-1 [-1 ~ W

or, by definition,_ =. [wX !:
[- 1 -w12

! !22_
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T is similarly replaced by T

C.3 Fischer's Linear Discriminant Functions

bi (N-K) wilTk i

a k lo 1 k Tki

wher e

1k1 L= f ki lm
m=1

CA4 Canonical Discriminant Functions

The canonical discriminant function coefficients are

determined by solving the general eigenvalue problem

(T-W)V = DWV

where V is the unscaled matrix of discriminant- function

coefficients and D is a diagonal matrix of eigenvalues.

The eigensystem is solved as follows:

W = LU

is formed (Cholesky decomposition) , where L is a lowcer

triangular matrix and U = L'.

The symmetric matrix _ 1BU_ 1 is formed -nd the system

(L -1(T-W )U -1- D)UV = 0)

is solved using tridiegonalization and th- CL method. The,

result is r = min(q,K-1) eigenvalues and correspontlinq

orthonormal eigenvectors UV. The Piqenvectors of thn

original system are

V-U_ (UV)



ordered by decreasing magnitude of eigenvalue. The

standardized canonical discriminant coefficient matrix is

1/2 1/2 1/2
diag( 11  w2 2 ' " 'qq ) 1

where V1 is the matrix of eiqenvectors such that

C.5 Classification

Let f be the lxq vector of discriminating variables

for a particular texture sample. The Ixr vector of

* canonical discriminant function values is

d =fB + a

A chi-square distance from each centroid is computed

as

xk = (d- dk ) ( d - dk ) '

where dk is the mean vector for class k. The distribution

of x k is chi-square with r degrees of freedom if the

texture sample is a member of class k.

The classification, or posterior, probability is

e-x/2

P(kld) = - - -
K
e ex/2

i=l

This takes into account the equal prior probabilities Pnd

that the pooled within groups covariance matrix of the

discriminant functions is an identity matrix. Each case

is classified into the class for which P(kld) is highest.

The calculation actually used by SPSS is
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0 gk- gmax -46

Pk exp (gk- gmax )
-- otherwise

K

exp(g- g
i=l i max

where

1 1gk = log V - xk

gmax ff max gk
k
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